Efficient and environmentally friendly technologies of stumps removal on fellings

10.12737/2195 ◽  
2014 ◽  
Vol 3 (4) ◽  
pp. 146-151
Author(s):  
Поздняков ◽  
Evgeniy Pozdnyakov

Shredding of stumps below the soil surface is constrained by intense abrasion of the cutting elements as a result of their interaction with the soil particles. Therefore, to solve this problem is to remove the stump from the upper soil layer. To perform this operation as a working bodies rip-strip off elements are encouraged to use in the form of pieces of rope that will not only prepare the ground around the stump, but also clear it from adhering soil. Application of this technology will reduce the abrasion and increase grinding period of cutting elements of machines for grinding stumps, thereby increasing their productivity.

2021 ◽  
pp. 87-90
Author(s):  
Igor Lvovich Abramov

The lack of the operating elements strength calculating methods providing sufficient accuracy of the results is a significant problem in modern agricultural machinery development. The using calculation models do not take into consideration the microrelief of the treated surface, which leads to a significant error in determining both extreme and long-term loads on the working bodies of mechanisms. In this article author analyzes the cultivated soil treated surface microgeometry influence on the forces arising in the tillage tool. The existing design model is considered on the needle harrow example, its disadvantages are indicated and a way to eliminate them is proposed. Experimental data on the soil surface profile microroughnesses size study are presented, regularities of the microroughnesses random distribution are revealed, in particular, the assumption of the normal nature of this distribution is confirmed. The dependences based on the obtained data are proposed for a more accurate acting on the tillage tool loads calculation.


Author(s):  
N.V. Aldoshin ◽  
◽  
A.A. Manokhin ◽  
V.V. Semin ◽  
◽  
...  

The article presents an analysis of tools for subsoil application of liquid or-ganic fertilizers using a hose system and a comparative assessment of technical means. Various types of working bodies for applying fertilizers deep into the soil layer are shown. Options of different depths of fertilization are described. Recommendations on the placement of the tie-down unit on the tool for attaching the towed hose are given.


Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
Kai Yang ◽  
Zejun Tang ◽  
Jianzhang Feng

Sandy soils are prone to nutrient losses, and consequently do not have as much as agricultural productivity as other soils. In this study, coal fly ash (CFA) and anionic polyacrylamide (PAM) granules were used as a sandy soil amendment. The two additives were incorporated to the sandy soil layer (depth of 0.2 m, slope gradient of 10°) at three CFA dosages and two PAM dosages. Urea was applied uniformly onto the low-nitrogen (N) soil surface prior to the simulated rainfall experiment (rainfall intensity of 1.5 mm/min). The results showed that compared with no addition of CFA and PAM, the addition of CFA and/or PAM caused some increases in the cumulative NO3−-N and NH4+-N losses with surface runoff; when the rainfall event ended, 15% CFA alone treatment and 0.01–0.02% PAM alone treatment resulted in small but significant increases in the cumulative runoff-associated NO3−-N concentration (p < 0.05), meanwhile 10% CFA + 0.01% PAM treatment and 15% CFA alone treatment resulted in nonsignificant small increases in the cumulative runoff-associated NH4+-N concentration (p > 0.05). After the rainfall event, both CFA and PAM alone treatments increased the concentrations of NO3−-N and NH4+-N retained in the sandy soil layer compared with the unamended soil. As the CFA and PAM co-application rates increased, the additive effect of CFA and PAM on improving the nutrient retention of sandy soil increased.


1991 ◽  
Vol 28 (3) ◽  
pp. 248-254 ◽  
Author(s):  
Hiromichi OGAWA ◽  
Shinichi TAKEBE ◽  
Tadatoshi YAMAMOTO

Author(s):  
Виктор Михайлович Белолипецкий ◽  
Светлана Николаевна Генова

Практический интерес в районах вечной мерзлоты представляет глубина сезонного оттаивания. Построена одномерная (в вертикальном направлении) упрощенная полуэмпирическая модель динамики вечной мерзлоты в “приближении медленных движений границ фазового перехода”, основанная на задаче Стефана и эмпирических соотношениях. Калибровочные параметры модели выбираются для исследуемого района с использованием натурных измерений глубины оттаивания и температуры воздуха. Проверка работоспособности численной модели проведена для района оз. Тулик (Аляска). Получено согласие рассчитанных значений глубины талого слоя и температуры поверхности почвы с результатами измерений Due to the change in global air temperature, the assessment of permafrost reactions to climate change is of interest. As the climate warms, both the thickness of the thawed soil layer and the period for existence of the talik are increased. The present paper proposes a small-size numerical model of vertical temperature distributions in the thawed and frozen layers when a frozen layer on the soil surface is absent. In the vertical direction, thawed and frozen soils are separated. The theoretical description of the temperature field in soils when they freeze or melt is carried out using the solution of the Stefan problem. The mathematical model is based on thermal conductivity equations for the frozen and melted zones. At the interfacial boundary, the Dirichlet condition for temperature and the Stefan condition are set. The numerical methods for solving of Stefan problems are divided into two classes, namely, methods with explicit division of fronts and methods of end-to-end counting. In the present work, the method with the selection of fronts is implemented. In the one-dimensional Stefan problem, when transformed to new variables, the computational domain in the spatial variable is mapped onto the interval [0 , 1]. In the presented equations, the convective terms characterize the rate of temperature transfer (model 1). A simplified version of the Stefan problem solution is considered without taking into account this rate (“approximation of slow movements of the boundaries of the phase transition”, model 2). The model is tuned to a specific object of research. Model parameter values can vary significantly in different geographic regions. This paper simulates the dynamics of permafrost in the area of Lake Tulik (Alaska) in summer. Test calculations based on the proposed simplified model show its adequacy and consistency with field measurements. The developed model can be used for qualitative studies of the long-term dynamics of permafrost using data of the air temperature, relative air humidity and precipitation


2021 ◽  
Vol 37 ◽  
pp. 00068
Author(s):  
S. A. Ivanaisky ◽  
M. A. Kanaev ◽  
Y. A. Kirov ◽  
M. S. Ivanaisky ◽  
S. V. Denisov

The research objective is to improve the quality of soil loosening using combined working bodies for surface moisture-retaining soil cultivation. The efficiency of accumulation and conservation of precipitation in the autumn-winter period depends on the method of post-harvest soil cultivation. One of them is the autumn surface water-retaining treatment, which makes it possible to increase the efficiency of the processes of accumulation and conservation of moisture due to the deeper loosening of the cultivated soil layer. During loosening and mulching, the top layer of the soil contributes to the accumulation and preservation of moisture not only in the upper but also in deeper soil horizons. However, the used tillage tools do not fully solve the problem of the high-quality performance of surface moisture-retaining soil cultivation. The article presents the results of studies of the degree of influence of geometric and technological parameters of the additional active cultivator on the quality of surface tillage. Based on the results of the research carried out, the technological process of performing the surface tillage operation has been improved and combined working bodies have been developed for its implementation.


1969 ◽  
Vol 41 (1) ◽  
pp. 25-34
Author(s):  
Juan A. Bonnet ◽  
Eduardo J. Brenes

1. The area of soils surveyed in Lajas Valley was 24,656 acres. 2. The soils were classified into normal, saline, saline-alkali, and non- saline-alkali at depths of 0 to 8, 8 to 24, 24 to 48, and 48 to 72 inches, respectively. 3. A large percentage of normal soils was found in the upper soil layer and of saline-alkali soils in the lower layers. 4. Normal soils occupied about 86 percent of the surface area to a depth of 8 inches and about 63 percent at a depth of 8 to 24 inches. 5. Soils with a salinity problem increased from 9 percent at a depth of 8 inches to 28.3, 58.8 and 68.5 percent, respectively, at depths of 8 to 24, 24 to 48, and 48 to 72 inches. 6. The soils with a salinity problem were largely of the saline-alkali class. 7. In four soil-profile samples taken from Lajas Valley, the saturation percentage varied from 58 to 191, the electrical conductivity from 0.8 to 28.4 millimhos per centimeter, the exchangeable-sodium percentage from 2.2 to 46.0, the soil pH from 8.1 to 8.9, the content of gypsum from 0 to 21.9 tons per acre-foot, the gypsum requirement from 0 to 23.8 tons per acre-foot, and the hydraulic conductivity from less than 0.005 to 6.24 inches of water per hour. Higher gypsum contents were found in the deep subsoil layers of two soils (profiles 1 and 4). Amounts of gypsum varying from 9.9 to 20.3 tons per acre-foot of depth, are required for the reclamation of the surface layers of these two profiles. In general, the hydraulic- conductivity values show that the soil-surface layers are more permeable than the subsoil layers. 8. The procedure and methods used in this paper were found to be accurate, simple, rapid, and practical. They are recommended for the coordination of data related to the classification and reclamation of soils affected by salinity problems in the different countries of the world.


Author(s):  
Jinsheng Li ◽  
Jianying Shang ◽  
Ding Huang ◽  
Shiming Tang ◽  
Tianci Zhao ◽  
...  

The distribution of soil particle sizes is closely related to soil health condition. In this study, grasslands under different grazing intensities and different cultivation ages grasslands were selected to evaluate the dynamics of soil particle size redistribution in different soil layers. When the grazing intensity increased, the percentage of 2000~150-μm soil particles in the 0–10-cm soil layer decreased; 150~53-μm soil particles remained relatively stable among the grazing intensities—approximately 28.52%~35.39%. However, the percentage of less than 53-μm soil particles increased. In cultivated grasslands, the larger sizes (>53 μm) of soil particles increased and the smaller sizes (<53 μm) decreased significantly (p < 0.05) in the 0–10 cm-soil layer with increasing cultivation ages. The increase in small soil particles (<53 μm) in topsoil associated with grazing intensity increased the potential risk of further degradation by wind erosion. The increase in big soil particles (>53 μm) in topsoil associated with cultivation ages decreased the soil capacity of holding water and nutrient. Therefore, to maintain the sustainability of grassland uses, grazing grasslands need to avoid heavy grazing, and cultivated grasslands need to change current cultivation practices.


Resources ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 85
Author(s):  
Małgorzata Biniak-Pieróg ◽  
Mieczysław Chalfen ◽  
Andrzej Żyromski ◽  
Andrzej Doroszewski ◽  
Tomasz Jóźwicki

The objective of this study was the development and verification of a model of soil moisture decrease during dry spells—SMDS. The analyses were based on diurnal information of the occurrence of atmospheric precipitation and diurnal values of soil moisture under a bare soil surface, covering the period of 2003–2019, from May until October. A decreasing exponential trend was used for the description of the rate of moisture decrease in six layers of the soil profile during dry spells. The least squares method was used to determine, for each dry spell and soil depth, the value of exponent α , which described the rate of soil moisture decrease. Data from the years 2003–2015 were used for the identification of parameter α of the model for each of the layers separately, while data from 2016–2019 were used for model verification. The mean relative error between moisture values measured in 2016–2019 and the calculated values was 3.8%, and accepted as sufficiently accurate. It was found that the error of model fitting decreased with soil layer depth, from 8.1% for the surface layer to 1.0% for the deepest layer, while increasing with the duration of the dry spell at the rate of 0.5%/day. The universality of the model was also confirmed by verification made with the use of the results of soil moisture measurements conducted in the years 2009–2019 at two other independent locations. However, it should be emphasized that in the case of the surface horizon of soil, for which the process of soil drying is a function of factors occurring in the atmosphere, the developed model may have limited application and the obtained results may be affected by greater errors. The adoption of calculated values of coefficient α as characteristic for the individual measurement depths allowed calculation of the predicted values of moisture as a function of the duration of a dry spell, relative to the initial moisture level adopted as 100%. The exponential form of the trend of soil moisture changes in time adopted for the analysis also allowed calculation of the duration of a hypothetical dry spell t, after which soil moisture at a given depth drops from the known initial moisture θ0 to the predicted moisture θ. This is an important finding from the perspective of land use.


Sign in / Sign up

Export Citation Format

Share Document