Mathematical model of wood cutting as the basis for optimum control algorithms of the cutting machine at decorative and art cutting

Author(s):  
Hayder Mohammed
2020 ◽  
Vol 75 (2) ◽  
pp. 167-174
Author(s):  
A. A. Ilukhina ◽  
V. I. Kolpakov ◽  
V. V. Veltishchev ◽  
A. L. Galinovsky ◽  
A. V. Khakhalin

2012 ◽  
Vol 562-564 ◽  
pp. 1496-1500
Author(s):  
Qiang Li ◽  
Wei Chen ◽  
Ren He

To investigate the accuracy of modeling DC motor, the platform for measurement and calculation dynamic parameters is built by the Hardware-In-the-Loop(HIL) method based on dSPACE system. The running state of DC motor has to be changed with adjustment of PWM duty-cycle using ControlDesk software. Having got measurement and calculation parameters value of DC motor, we compare the test results with simulation value using the model of DC motor with cascade control in Matlab/Simulink software according to the classical mathematical model. It confirms the established model of DC motor accurately and reliability using new parameters, which provides the basis of more complex control algorithms and also indicates that the feasibility and generalization application value of measurement and calculation method for DC motor.


Author(s):  
Errol R. Hoffmann

Two tasks in which subjects aim at an array of devices were considered: moving to one knob within an array and moving the finger on a numeric keypad. It was shown by a mathematical model based on Fitts' law, that when the array density is specified for the array of knobs or keys, there is an optimum control size for minimum movement time. The theoretical result was obtained by considering a two-element model of the movement, the first being a reach to the general location of the control and the second describing the insertion of the fingers into the space between adjacent controls. As the first element has a movement time that decreases with increase of control size and the second a time increasing with control size, there is an optimum control size where the movement time is a minimum.


2015 ◽  
Vol 1084 ◽  
pp. 678-683
Author(s):  
Oleg P. Savitsky ◽  
Valeriy F. Dyadik ◽  
Oksana P. Kabrysheva

This paper is devoted to one of the most urgent problems in the automation of fluorine production (FP) processes: the development of a dynamic model of the hydrodynamic regime. The paper suggests a dynamic model represented in the form that provides the effective use of up-to-date methods of synthesis and analysis for control algorithms. The model is a set of dynamic models of individual units and devices that have a significant impact on the processes in the technological scheme.


2011 ◽  
Vol 221 ◽  
pp. 571-576
Author(s):  
Chun Tang Zhang ◽  
Zhen Zhu Yu

Aiming at rubber sulfuration of nonlinear, delay and complexity, a Fuzzy/PID compound control algorithm is proposed. The algorithm combined fuzzy inference system and PID algorithm, it has solved well the problem which is difficult to establish a precise mathematical model because of the uncertainties and complexities of rubber sulfuration. The simulation results indicate that the control algorithm is viable and effective.


2014 ◽  
Vol 1021 ◽  
pp. 186-189 ◽  
Author(s):  
Hai Yong Jiang ◽  
Ai Jun Zhang ◽  
Bao Jian Cui ◽  
Jiang Tao Liu ◽  
Xiao Na Qi ◽  
...  

. In order to meet the needs about collecting the soil containing tree species, we designed an automatic cutting machine which can receive loam containing seeds and used in the forest loam. Features of this machine are the application of the chain plate knife, not only can hierarchical cut loam containing seeds, but also will transport the loam to the collecting bag. In the design process, through building a mathematical model about the chain plate knife cut soil, Analysis of the resistance of working, and get the relationship between the overall level of resistance and the working width. The experimental results show that the machine is easily to be operated, can highly efficient cut soil, and it’s suitable for use in the woodlands.


2016 ◽  
Vol 8 (5) ◽  
pp. 540-547
Author(s):  
Tomas Eglynas ◽  
Audrius Senulis ◽  
Marijonas Bogdevičius ◽  
Arūnas Andziulis ◽  
Mindaugas Jusis

The main control object of Quay crane, which is operating in seaport intermodal terminal cargo loading and unloading process, is the crane trolley. One of the main frequent problem, which occurs, is the swinging of the container. This swinging is caused not only by external forces but also by the movement of the trolley. The research results of recent years produced various types of control algorithms by the other researchers. The control algorithms are solving separate control problems of Quay crane in laboratory environment. However, there is still complex control algorithm design and the controller’s parameter estimation problems to be solved. This paper presents mathematical model of the Quay crane trolley mechanism with the suspended cargo. The mathematical model is implemented in Matlab Simulink environment and using Dormand-Prince solving method. The presented model of laboratory quay crane mathematical model is dedicated to parameter estimation of PID controller of closed loop system with the usage of S –form speed input profile. The article includes the dynamic model of the presented system, the description of closed loop system and modeling results. These results will be used as an initial information for the PID parameters estimation in real quay crane control system. The simu-lation of the model was performed using estimated values of controller. The sway influence of the cargo, the usage of the trolley speed input S-shaper and the PID controller was used to control the trolley speed. Jūriniame įvairiarūšiame terminale atliekant konteinerių krovos procesus, vienas iš krantinės kranų valdymo objektų yra vežimėlis. Viena iš problemų, su kuria susiduriama dažniausiai, yra konteinerio svyravimai, kuriuos, be išorinių veiksnių, taip pat sukelia ir vežimėlio judėji-mas. Remdamiesi paskutinių kelerių metų tyrimais, mokslininkai sukūrė įvairių valdymo algoritmų, kurie laboratorinėmis sąlygomis spren-džia atskiras krantinės kranų valdymo problemas. Tačiau kompleksinių ir efektyvių valdymo algoritmų ir jų valdymo sistemos parametrų nustatymo metodai vis dar kuriami ir tobulinami. Šiame darbe sudarytas krantinės krano vežimėlio su kabančiu kroviniu mechanizmo sis-temos matematinis modelis. Šis modelis realizuotas Matlab Simulink aplinkoje ir sprendžiamas taikant Dormand-Prince metodą. Sukurtas laboratorinio krantinės krano valdymo sistemos kompiuterinis modelis skirtas uždarosios valdymo sistemos PID valdiklio parametrams nustatyti, kai užduoties signalui taikomas S formos greičio kitimo profilis. Darbe pateiktas sistemos dinaminis modelis, aprašyta uždaroji valdymo sistema, pateikti kompiuterinio modeliavimo rezultatai, kuriuos planuojama panaudoti kaip pradinę informaciją realaus krano PID valdiklio parametrams derinti. Atlikta simuliacija naudojant nustatytas vertes ir įvertinti krovinio svyravimai taikant S formos greičio kitimo profilį kartu su PID valdikliu vežimėlio greičiui valdyti.


10.12737/8465 ◽  
2015 ◽  
Vol 4 (4) ◽  
pp. 147-155
Author(s):  
Поздняков ◽  
Evgeniy Pozdnyakov

Technological process and design of site-maker is proposed with flexible working bodies in the form of rope pieces, performing remote of the soil by sites around stumps for their grinding below ground level in order to improve the quality of tillers on cutting and efficiency of the cutting machine elements to reduce the stumps by reducing wear and tear resulting from their contact with soil particles. A mathematical model of site-maker is developed, system of equations describing the device as a whole and interaction of the elements of flexible working bodies, soil and stump one another are presented.


2013 ◽  
Vol 332 ◽  
pp. 411-416
Author(s):  
Silvia Ferent-Pipas ◽  
Bogdan Padurean ◽  
Cornel Ciupan

This article is about creating a mathematical model for the calculation of linear speed, of a water jet machine, depending on the thickness of the material, the water pressure, the abrasive rate flow and the required cut quality, in order to justify the cutting costs of a water jet machine that are directly proportional with the necessary cutting time. Finding the cutting speed, it can be find the necessary time for the cutting, and so, the resulting costs for the process. The optimization of the process, after some minimize and maximize criteria is also presented in this article.


Sign in / Sign up

Export Citation Format

Share Document