On the Educational-Methodical Complex of Discipline «Engineering and Computer Graphics» in Terms of Modernization of the Course of Descriptive Geometry

2018 ◽  
Vol 6 (5) ◽  
pp. 34-40 ◽  
Author(s):  
Юрий Поликарпов ◽  
Yuriy Polikarpov ◽  
М. Семашко ◽  
M. Semashko ◽  
Л. Худякова ◽  
...  

In connection with the use of machine-building enterprises to create new products of computer-aided design, which solve the problem in three-dimensional space, the problem of modernization of the course of descriptive geometry becomes relevant. The article describes the experience of the Department of descriptive geometry and drawing of the Ufa state aviation technical University for the modernization of the course of descriptive geometry. The questions of development of educational and methodical complex of the modernized discipline “engineering and computer graphics”, about its components which are prepared by Department and are used in educational process at training of bachelors in the directions which are included in the enlarged group of 150000 «Mechanical engineering» are in detail considered.

Author(s):  
Ethan Hilton ◽  
Wayne Li ◽  
Sunni H. Newton ◽  
Meltem Alemdar ◽  
Raghuram Pucha ◽  
...  

As Computer-Aided Design software has become more advanced, the use of hand-drawn engineering drawings has greatly diminished. This reduction has led to free-hand sketching becoming less emphasized in engineering education. While many engineering curriculums formerly included courses dedicated entirely to sketching and hand drafting, these topics are no longer addressed by most current curriculums. However, it has been observed that sketching has many benefits including improved communication in the design process, idea generation exercises, and visualizing design ideas in three-dimensional space. While isometric sketching has long been the preferred method in engineering curriculums, there are benefits of teaching perspective sketching including the creation of more realistic sketches for communication and idea generation. This paper presents the development of a perspective-based sketching curriculum and the study of how this method compares to more traditional methods of teaching sketching to students in a freshman level engineering graphics course. The results show that the perspective-based sketching method leads to equivalent gains in spatial visualization skills and final design self-efficacy as the traditional method of teaching hand sketching. While maintaining these skills, the new method also taught students additional skills. Through surveys and interviews, the students expressed that these skills would be useful to them in their future coursework and careers.


Author(s):  
Volodymyr Vanin ◽  
Gennadii Virchenko ◽  
Olena Gumen

The emergence of the applied geometry school of the Igor Sikorsky Kyiv Polytechnic Institute is associated with the formation of an educational institution at the end of the 19th century. For more than 120 years of history, significant results have been achieved, which have been implemented into production and the educational process. The available significant theoretical and practical achievements allowed to identify promising directions for further development. During this period, the Department of Descriptive Geometry, Engineering and Computer Graphics has published thousands of scientific works, hundreds of educational and methodological publications, 15 doctoral and more than 60 candidate dissertations have been defended. The scientific topics are connected with the shaping of complex curves and surfaces by methods of algebraic, differential, projective geometry, taking into account the needs of production; construction of agricultural machinery; multidimensional geometry; involute-evolutionary models; design and manufacture of aircrafts; optimization of industrial products; computer geometry, etc. The obtained results have been implemented at the leading machine-building enterprises of Ukraine, such as SE “Antonov”, Kharkiv State Aviation Production Enterprise, OJSC “Meridian” named after S.P. Korolyov, Research and Production Association "Kyiv Automatiсs Plant", etc. Over the past decade, more than 30 patents for utility models have been obtained, which are successfully applied in practice. Thus, the school of applied geometry of the Igor Sikorsky Kyiv Polytechnic Institute has more than a century of history. Over the years, a significant contribution has been made to the development of domestic science, industry, and higher education. Today the existing achievements contribute to improving the efficiency of computer-aided design of various technical products, processes of its manufacture, and operation. Nowadays, the staff of the Department of Descriptive Geometry, Engineering and Computer Graphics faces a number of important scientific, educational and production problems, which are successfully solved thanks to the accumulated theoretical and practical experience. This is also facilitated by the wide involvement of young people in these activities.


Author(s):  
Александр Афанасьев ◽  
Afanasyev Afanasyev ◽  
Сергей Бригаднов ◽  
Sergey Brigadnov

The actual task in the field of computer-aided design of machine-building objects is to increase the level of automation of structural-parametric analysis of design solutions due to the repetition of their use, reducing the number of design operations and ensuring the corresponding competencies of designers. Developed methods and algorithms should ensure the acquisition of the necessary competencies for the designer for successful project activities in the field of computer-aided design, increasing the effectiveness of training. The system of analysis of design solutions should improve the quality of design solutions implemented in CAD KOMPAS-3D. In this paper, an overview of methods, systems and tools for analyzing design solutions implemented in the CAD-3D environment. The main features of such systems are described, their main disadvantages are identified: the lack of functions for determining non-optimal sequences of design operations, the inability to automatically rebuild a three-dimensional model of a machine-building product on the basis of analysis of the design model tree. A complex system for the analysis of project solutions and the training of a designer was developed and implemented, based on methods, models and algorithms for analysis and adaptive learning. The results of a computational experiment are presented, on the basis of which it can be concluded that the use of developed software enhances the efficiency and quality of the designer's training in the processes of constructing three-dimensional solid-state machine-building products in CAD KOMPAS-3D.


Author(s):  
Evgeniy Konopatskiy ◽  
Andrey Bezditnyi

The paper describes an approach to solid modeling of geometric objects in the form of an organized three-parameter set of points in three-dimensional space. The relevance of the research topic is due to the widespread use of solid-state models in various branches of science and technology, mechanical engineering, construction and medicine. Solid-state computer models are currently one of the basic computer graphics tools and an integral part of computer- aided design and calculation systems. It is widely used as one of the control elements of CNC machines and 3D printing, the development of information systems in the design and construction of buildings and structures, finite element calculations of deformed states in aircraft and mechanical engineering, their manufacture in medicine, etc. The choice of point calculus as a mathematical apparatus for the analytical description of solid models of geometric objects is substantiated. Examples of modeling sets of elliptical bodies and toroidal bodies in a simplex of three-dimensional space are given.


2018 ◽  
Vol 6 (3) ◽  
pp. 49-55 ◽  
Author(s):  
Юрий Поликарпов ◽  
Yuriy Polikarpov

A brief journey into the history of industrial revolutions has been presented. It is noted that our society has entered the third industrial revolution’s era. In this regard, the main consequences of the third industrial revolution have been noted. The stages of development for design methods and the basic science providing the design process have been considered. The historical necessity and significance of Gaspar Monge’s descriptive geometry appearance has been considered as well. Modern products design approaches using CAD systems are described. It is stated that design has again returned to three-dimensional space, in fact prior to the Monge’s era, but at a new stage of development. The conclusion is drawn that, taking into account the realities and needs of modern production, it is necessary to modernize the descriptive geometry course for technical high educational institutions. The author's suggestions on course content changing are presented related to extension of one sections and reducing of another ones, taking into account the fact that in real design practice the designer solves geometric problems in three-dimensional space, rather than in a complex drawing. It is noted that in connection with the extensive use of CAD systems, the design stages and the composition of design documentation developed at each stage are changed. Such concepts as "electronic model" and "electronic document" have appeared and are widely used, that is confirmed by adoption of new USDD standards. In such a case the role and significance of some types of drawings may change in the near future, since modern CAD systems allow transfer to production not 2D drawings, but electronic models and product drawings.


2015 ◽  
Vol 760 ◽  
pp. 521-526
Author(s):  
Diana Irinel Băilă ◽  
Cristian Vasile Doicin ◽  
Oana Cătălina Mocioiu

The selective laser sintering is a technique used to quickly fabricate a scale model of a physical part or assembly using three-dimensional computer aided design CAD data. This technique is used to obtain complex pieces in different domains like machine building industry, automotive industry, foundry and medicine. The selective laser sintering process is used to obtain different prototypes, medical instruments or personalized implants in medicine. The powders used to obtain the medical instruments and for implants must to be very resistant to corrosion, non-toxic and present good fatigue resistance. The powders used are in generally, stainless steel, alloy titan TA6V, alloy Co-Cr and different polyamides.


2013 ◽  
Vol 135 (08) ◽  
pp. 30-35
Author(s):  
Judy Vance

This paper explores the use of immersive computing or virtual reality throughout a product design, assembly, and disassembly. Virtual reality or immersive computing creates a sense of presence for participants through devices that stimulate the senses. Immersive computing technology goes a step further by allowing the participant to interact with computer-generated models or environments rather than to passively view a screen. The technology is a collection of hardware and software that lets the participant explore digitally created objects within a three-dimensional space. Immersive computing presents a sharp contrast to existing two-dimensional computer interfaces used with computer-aided design (CAD) software programs. In order to illustrate the use of immersive computing in product design, research projects focus on using the technology to explore uncertainty in making design decisions. Industry is realizing the benefits of increased communication and deeper understanding of complex design issues through the use of immersive computing. Experts believe that when every engineer’s desktop includes immersive computing technology, the results will be better products produced more economically and with increased national competitiveness.


Author(s):  
Л.В. Карпюк ◽  
Н.О. Давіденко

The article discusses the problems of teaching students engineering and computer graphics in a single course based on a computer-aided design (CAD) system. Examples of training tasks for acquiring knowledge, skills and abilities in the environment of the drawing and graphic editor of the AutoCAD system are given. They are necessary when performing drawings on engineering graphics, as well as the graphic part of course projects for students of mechanical specialties. Examples of exercises for self-study of the material are considered for a deeper study of the drawing-graphic module structure of the system and the acquisition of skills to work with its tools. The article also discusses several topics for studying the graphical editor AutoCAD, it reveals their contents and provides methods for completing practical tasks. A comprehensive training program extends the ability of teachers to submit material, increases students' interest in graphic disciplines, so it can achieve better results in their development. However, there are a number of problems with this approach. Different levels of basic knowledge of students in the field of computer technology require greater individualization in the organization of the educational process. An additional burden for the teacher is to check the electronic drawings and to control the independence of students' work when performing graphic works using CAD. Combining engineering and computer graphics requires more intensive work from students. It is noted that the implementation of the proposed set of tasks is only the first stage  of training students in computer technologies for creating design documentation. The acquired knowledge, skills and working skills in the environment of the AutoCAD system will be in demand when studying modern means of three-dimensional modeling. The execution of drawings using computer tools is undoubtedly more attractive to students, compared to traditional drawing. It is also important to create conditions for actualizing the intellectual potential of students, as well as the formation of positive motivation. Enthusiastic students independently master the functions of the system that are not intended for study by the curriculum. They participate with pleasure in Olympiads in engineering and computer graphics. Ways of improving the verification of graphic works by a teacher are developped.  A partial solution to the problem of checking the graphic part of course projects using preliminary drawings in a draft version and intermediate printouts of their electronic versions are proposed.


2020 ◽  
Vol 10 (9) ◽  
pp. 3253
Author(s):  
Dmitry Kaplun ◽  
Mikhail Golovin ◽  
Alisa Sufelfa ◽  
Oskar Sachenkov ◽  
Konstantin Shcherbina ◽  
...  

Modern prosthetics largely relies upon visual data processing and implementation technologies such as 3D scanning, mathematical modeling, computer-aided design (CAD) tools, and 3D-printing during all stages from design to fabrication. Despite the intensive advancement of these technologies, once the prosthetic socket model is obtained by 3D scanning, its appropriate orientation and positioning remain largely the responsibility of an expert requiring substantial manual effort. In this paper, an automated orientation algorithm based on the adjustment of the 3D-model virtual anatomical axis of the tibia along with the vertical axis of the rectangular coordinates in three-dimensional space is proposed. The suggested algorithm is implemented, tested for performance and experimentally validated by explicit comparisons against an expert assessment.


Sign in / Sign up

Export Citation Format

Share Document