scholarly journals ÇELİK FİBERLİ ASFALT BETONU KARIŞIMLARIN MARSHALL STABİLİTESİ VE İNDİREKT ÇEKME MUKAVEMETİNİN İNCELENMESİ

2020 ◽  
Vol 15 (4) ◽  
pp. 209-217
Author(s):  
İhsan Güzel

One of the conductive fiber types used in the mixtures in order to provide the desired performance by reducing the deterioration of asphalt concrete coatings during the project is steel fibers. In recent years, studies on the use of steel fiber to provide self-healing property by heating the layers during the repair phase have attracted attention. In order to evaluate the economy of steel fiber layers, it is necessary to know the mechanical properties of these layers before they come into repair. In this study, the abrasion made Marshall design to binder mixtures, according to the design result, at the rate of 0.1%, 0.15% and 0.2% of the total weight of aggregate and bitumen, a steel fiber of 10 mm length and 1 mm diameter was added to the mixtures. After the first Marshall stability, conditioned indirect tensile strength tests on the mixtures, the same tests were applied again without removing the samples from the device. As a result, the highest Marshall stability and conditioned indirect tensile strength were obtained in binder mixes with 0.10% steel fiber compared to the unadulterated, while in the additive wear mixture tests, close to the additive-free or lower results were obtained.

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7060
Author(s):  
Mohammad Alharthai ◽  
Qing Lu ◽  
Ahmed Elnihum ◽  
Asad Elmagarhe

This study investigates the substitution of conventional aggregate with a Florida washed shell in open-graded asphalt mixtures and evaluates the optimal substitution percentage in aggregate gradations of various nominal maximum aggregate sizes (NMASs) (i.e., 4.75, 9.5, and 12.5 mm). Laboratory experiments were performed on open-graded asphalt mixture specimens with the coarse aggregate of sizes between 2.36 and 12.5 mm being replaced by the Florida washed shell at various percentages (0, 15, 30, 45, and 100%). Specimen properties relevant to the performance of open-graded asphalt mixtures in the field were tested, evaluated, and compared. Specifically, a Marshall stability test, Cantabro test, indirect tensile strength test, air void content test, and permeability test were conducted to evaluate the strength, resistance to raveling, cracking resistance, void content, and permeability of open-graded asphalt mixtures. The results show that there is no significant difference in the Marshall stability and indirect tensile strength when the coarse aggregates are replaced with Florida washed shell. This study also found that the optimum percentages of Florida washed shell in open-graded asphalt mixture were 15, 30, and 45% for 12.5, 9.5, and 4.75 mm NMAS gradations, respectively.


2021 ◽  
Vol 12 (1) ◽  
pp. 1-14
Author(s):  
Levy Sang ◽  
Temitope Idowu ◽  
Victoria Okumu

As the construction industry continues to evolve globally, there is a need to develop best practices geared towards achieving sustainable construction. Asphalt concrete’s demand has been increasing steadily with an estimated global demand of 122.5 million tons in 2019. This is driven primarily by the growth in construction activities in developing countries as each country works towards enhancing its transportation facilities to cater to the ever-expanding population. Hence, there are needs to develop newer and more efficient means of asphalt consumption. One of such is identifying cheaper or waste materials for use in Asphalt production. This study, therefore, examined the viability of waste marble dust (WMD), an industrial waste produced during the shaping and polishing of marble blocks and also during its extraction from the mines, as a mineral filler in Hot-mix asphalt (HMA) concrete. Engineering properties such as Marshall stability and flow, Void characteristics, Indirect tensile strength and Tensile strength ratio properties were examined. It was observed that the addition of WMD steadily increased the Marshall Stability and indirect tensile strength values and lowered the voids percentages. The study’s major finding is that waste marble dust is highly suitable as a mineral filler in HMA and a 3% by volume addition of WMD in HMA at 4.5% binder content produced the most optimal mix for use in road pavements.


2019 ◽  
Vol 803 ◽  
pp. 216-221
Author(s):  
Khwairakpam Lakshman Singh ◽  
Debjani Panda

The present study shows an investigation on improvement of bituminous binder and its mixes using modified binders with different percentage (1% to 7%) of domestic waste polyethylene (PE).The temperature susceptibility and penetration index (PI) of the modified binders were calculated. It is observed that PI value of modified binder is found higher than unmodified binder. The strength characteristics in terms of Marshall Stability and moisture susceptibility expressed in terms of indirect tensile strength ratio (ITSR) of bituminous concrete were determined in the present study. Marshall stability of the bituminous mixture containing 3% PE increased by 34.2% as compare to mixture containing unmodified binder. The addition of 3% PE to neat bitumen, results in an increase of 20% in indirect tensile strength ratio. Using PE modified binder in bituminous concrete mixes increases stability, indirect tensile strength which turn in provide better resistance against permanent deformation.


2020 ◽  
Vol 38 (5A) ◽  
pp. 789-800
Author(s):  
Duaa A. Khalaf ◽  
Zaynab I. Qasim ◽  
Karim H. Al Helo

This research investigates the behavior of Stone Matrix Asphalt mixtures (SMA) modified with styrene-butadiene-styrene (SBS) polymer at four percentages (1, 2, 3 and 4%) by weight of asphalt cement. The moisture susceptibility and rutting were taken into consideration in this study. To achieve the objective of this research the superpave system is conducted to design the asphalt mixtures. The physical properties of aggregate, bitumen and other mix materials were assessed and evaluated with the laboratory tests. The mixtures were prepared using penetration Graded (40-50) bitumen and a chemical named Polypropylene Fibers was used as a stabilizing additive. Fibers have been used in SMA mixtures for two main reasons: To increase the toughness and fracture resistance of hot mix asphalt (HMA) and to act as a stabilizer to prevent drain down of the asphalt binder. The laboratory tests include indirect tensile strength test, Marshall stability and retained Marshall Stability test (RMS). For rutting test the Roller wheel compactor is used for preparing the asphaltic samples and Wheel tracking device is used to evaluate the rutting of asphaltic slabs. The results showed that the SBS polymer asphalt mixture gave better moisture sensitivity and better fracture resistance according to the study.It is noted that indirect tensile strength ratio (TSR) increases by 93.1 % and the rut depth decreases by 32.5 % when adding 3% SBS polymer to SMA.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yongjoo Kim ◽  
Tae-Soon Park

This paper presents the reinforcing effects of the inclusion of short polypropylene fibers on recycled foamed asphalt (RFA) mixture. Short polypropylene fibers of 10 mm length with a 0.15% by weight mixing ratio of the fiber to the asphalt binder were used. The Marshall stability test, the indirect tensile strength test, the resilient modulus test, and wheel tracking test of the RFA mixtures were conducted. The test results were compared to find out the reinforcing effects of the inclusion of the fiber and the other mixtures, which included the conventional recycled foamed asphalt (RFA) mixtures; the cement reinforced recycled foamed asphalt (CRFA) mixtures; the semihot recycled foamed asphalt (SRFA) mixtures; and recycled hot-mix asphalt (RHMA) mixtures. It is found that the FRFA mixture shows higher Marshall stability than the RFA and SRFA mixtures, higher indirect tensile strength than the RFA mixture, and higher rut resistance than the RFA, SRFA, and RHMA mixtures as seen from the wheel tracking test.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1392 ◽  
Author(s):  
Jiuming Wan ◽  
Yue Xiao ◽  
Wei Song ◽  
Cheng Chen ◽  
Pan Pan ◽  
...  

Ultra-thin wearing course (UTWC) has been developed in pavement preventive maintenance for many years. However, how to prolong the service life of UTWC still requires further research. This study introduced AC-5 and SMA-5 asphalt mixtures, which can be induction heated. Steel fiber and steel slag were used in the mixtures as additives. Marshall Stability and induction heating property of mixtures were characterized. In addition, self-healing property of UTWC materials had been emphatically conducted. Adding steel fiber in mixtures led to higher Marshall Stability and lower flow value, while steel slag generally showed a negative effect. Induction heating property showed a positive relationship with the additives. Induction heating time was positively correlated to the healing ratio of the mixtures. Induction heating on the mixtures could recover the strength of mixtures to a certain degree. Mixtures with more steel fiber showed a higher healing ratio. Basalt-steel slag based mixtures showed better healing ratios than the basalt based mixtures. The healing ratios of mixtures illustrated a decreasing tendency as the healing cycle increased.


Author(s):  
Anusha T M ◽  
◽  
Sharath Kumar M D ◽  
Dr. H S Jagadeesh ◽  
◽  
...  

SMA is a gap graded mix composed of a high concentration of coarse aggregate that is held together in a thick asphalt film by a matrix of mineral filler and stabilizers. Since natural aggregates have become expensive, hence Reclaimed Asphalt Pavement (RAP) can be reused in pavement construction to reduce the environmental hazardous due to disposal problems. Since the RAP contains used aggregates, it is highly prone to fatigue, thermal and reflective cracking effect. Rheological and chemical properties of aged bitumen in RAP can be enhanced by use of untreated waste oils such as waste engine oil as rejuvenators. This research presents a study on fatigue performance of SMA mix with Reclaimed Asphalt Pavement (RAP) materials with and without rejuvenators and results were compared with conventional SMA mix. The materials used were first characterized by common laboratory tests. Then the three SMA mixes are tested using several laboratory test procedures: Marshall Stability, indirect tensile strength, moisture susceptibility, and indirect tension fatigue test. The optimum proportions of the of the mixes with highest stability are selected from the Marshall stability test. The indirect tensile strength test results show that the SMA mix replaced with RAP without rejuvenators showed higher tensile strength ratio and resistance to moisture damage when compared to conventional mix and optimum RAP replacement mix with rejuvenators. The fatigue test was conducted for the three optimum mixes at different temperature and stresses. The fatigue test results showed that at lower temperature and stresses, the RAP replaced SMA without rejuvenator offered better fatigue resistance than those with rejuvenator and conventional SMA mix. At higher temperatures, the RAP replaced SMA mix with rejuvenator offered similar fatigue lifecycle as conventional mix. However, at high stresses, conventional SMA mix offered better fatigue lifecycle. Increase in failure stresses resulted in decrease of number of fatigue cycles and increased in initial tensile strain of the mix. Thus, with the use of RAP substantial decrease in cost can be achieved without compromising the fatigue characteristic of the SMA mix.


CivilEng ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 370-384
Author(s):  
Hossein Noorvand ◽  
Kamil Kaloush ◽  
Jose Medina ◽  
Shane Underwood

Asphalt aging is one of the main factors causing asphalt pavements deterioration. Previous studies reported on some aging benefits of asphalt rubber mixtures through laboratory evaluation. A field observation of various pavement sections of crumb rubber modified asphalt friction courses (ARFC) in the Phoenix, Arizona area indicated an interesting pattern of transverse/reflective cracking. These ARFC courses were placed several years ago on existing jointed plain concrete pavements for highway noise mitigation. Over the years, the shoulders had very noticeable and extensive cracking over the joints; however, the driving lanes of the pavement showed less cracking formation in severity and extent. The issue with this phenomenon is that widely adopted theories that stem from continuum mechanics of materials and layered mechanics of pavement systems cannot directly explain this phenomenon. One hypothesis could be that traffic loads continually manipulate the pavement over time, which causes some maltenes (oils and resins) compounds absorbed in the crumb rubber particles to migrate out leading to rejuvenation of the mastic in the asphalt mixture. To investigate the validity of such a hypothesis, an experimental laboratory testing was undertaken to condition samples with and without dynamic loads at high temperatures. This was followed by creep compliance and indirect tensile strength testing. The results showed the higher creep for samples aged with dynamic loading compared to those aged without loading. Higher creep compliance was attributed to higher flexibility of samples due to the rejuvenation of the maltenes. This was also supported by the higher fracture energy results obtained for samples conditioned with dynamic loading from indirect tensile strength testing.


Sign in / Sign up

Export Citation Format

Share Document