scholarly journals Self-Healing Property of Ultra-Thin Wearing Courses by Induction Heating

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1392 ◽  
Author(s):  
Jiuming Wan ◽  
Yue Xiao ◽  
Wei Song ◽  
Cheng Chen ◽  
Pan Pan ◽  
...  

Ultra-thin wearing course (UTWC) has been developed in pavement preventive maintenance for many years. However, how to prolong the service life of UTWC still requires further research. This study introduced AC-5 and SMA-5 asphalt mixtures, which can be induction heated. Steel fiber and steel slag were used in the mixtures as additives. Marshall Stability and induction heating property of mixtures were characterized. In addition, self-healing property of UTWC materials had been emphatically conducted. Adding steel fiber in mixtures led to higher Marshall Stability and lower flow value, while steel slag generally showed a negative effect. Induction heating property showed a positive relationship with the additives. Induction heating time was positively correlated to the healing ratio of the mixtures. Induction heating on the mixtures could recover the strength of mixtures to a certain degree. Mixtures with more steel fiber showed a higher healing ratio. Basalt-steel slag based mixtures showed better healing ratios than the basalt based mixtures. The healing ratios of mixtures illustrated a decreasing tendency as the healing cycle increased.

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 889 ◽  
Author(s):  
Haiqin Xu ◽  
Shaopeng Wu ◽  
Hechuan Li ◽  
Yuechao Zhao ◽  
Yang Lv

Steel slag, a by-product of steelmaking, imposes lots of negative impacts on the environment. For alleviating negative impacts, more and more experiments have been carried out to explore the application possibility of steel slag. The purpose of this study is to explore the feasibility of steel slag being applied in induction healing asphalt concretes to replace coarse and fine aggregate. Surface texture and pore sizes of steel slag were firstly tested, and then steel slag and basalt asphalt mixtures modified with steel fibers were prepared. Moisture susceptibility, dynamic stability, mechanical property, thermal property, induction heating speed, natural cooling speed and healing property of the asphalt mixtures were evaluated. Results showed that steel slags had more obvious holes in the surface while the surface area is much larger than that of basalt. Furthermore, steel fibers and steel slag both have dynamic stability, and steel fibers contribute to increased moisture resistance while steel slag is not. Steel slag asphalt concrete showed better mechanical property and better capacity to store heating. Steel slag asphalt mixtures had a similar heating speed to basalt asphalt mixtures but a significantly slower cooling rate. Finally, the induction healing test and CT scanning test demonstrated that steel slag asphalt mixtures had a similar healing ability to basalt asphalt mixtures. It can be concluded that steel slags have the potential to replace the natural aggregates to be applied in induction heating self-healing asphalt concretes.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Hechuan Li ◽  
Jianying Yu ◽  
Quantao Liu ◽  
Yuanyuan Li ◽  
Yaqi Wu ◽  
...  

It is consensual that the self-healing property of asphalt concrete can repair the damage inside it during high temperature and rest period. In order to not affect the traffic, the rest period of asphalt pavement is very short and uncontrollable; so, it is necessary to obtain enough high temperature in a limited time to achieve higher healing efficiency of asphalt concrete. The purpose of this paper is to study the induction heating efficiency and healing behaviors of asphalt concretes doped with different conductive additives. Steel fiber, steel grit, and steel slag were added to asphalt mixtures as conductive additives to prepare induction healing asphalt concretes. The steel grit and steel slag were added to replace the aggregates of corresponding particle size by equal volume to ensure the consistency of asphalt concrete volume, which can avoid degrading the performance of asphalt concrete due to the change of porosity. The induction heating efficiency and healing rate of asphalt concrete were quantified by infrared camera and three-point bending-healing experiment, respectively. The results showed that the thermal properties of asphalt concrete changed with the addition of different conductive additives. The asphalt concrete with steel fiber had the best induction heating property. While steel slag had extremely weak induction heating speed, the better thermal insulation property of the asphalt concrete with steel slag resulted in a higher induction healing rate. It was suggested to add steel slag to induction healing asphalt concrete to improve the healing rate.


2020 ◽  
Vol 15 (4) ◽  
pp. 209-217
Author(s):  
İhsan Güzel

One of the conductive fiber types used in the mixtures in order to provide the desired performance by reducing the deterioration of asphalt concrete coatings during the project is steel fibers. In recent years, studies on the use of steel fiber to provide self-healing property by heating the layers during the repair phase have attracted attention. In order to evaluate the economy of steel fiber layers, it is necessary to know the mechanical properties of these layers before they come into repair. In this study, the abrasion made Marshall design to binder mixtures, according to the design result, at the rate of 0.1%, 0.15% and 0.2% of the total weight of aggregate and bitumen, a steel fiber of 10 mm length and 1 mm diameter was added to the mixtures. After the first Marshall stability, conditioned indirect tensile strength tests on the mixtures, the same tests were applied again without removing the samples from the device. As a result, the highest Marshall stability and conditioned indirect tensile strength were obtained in binder mixes with 0.10% steel fiber compared to the unadulterated, while in the additive wear mixture tests, close to the additive-free or lower results were obtained.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 869
Author(s):  
Minghua Wei ◽  
Shaopeng Wu ◽  
Haiqin Xu ◽  
Hechuan Li ◽  
Chao Yang

Steel slag is the by-product of the steelmaking industry, the negative influences of which prompt more investigation into the recycling methods of steel slag. The purpose of this study is to characterize steel slag filler and study its feasibility of replacing limestone filler in asphalt concrete by evaluating the resistance of asphalt mastic under various aging methods. Firstly, steel slag filler, limestone filler, virgin asphalt, steel slag filler asphalt mastic and limestone filler asphalt mastic were prepared. Subsequently, particle size distribution, surface characterization and pore characterization of the fillers were evaluated. Finally, rheological property, self-healing property and chemical functional groups of the asphalt mastics with various aging methods were tested via dynamic shear rheometer and Fourier transform infrared spectrometer. The results show that there are similar particle size distributions, however, different surface characterization and pore characterization in the fillers. The analysis to asphalt mastics demonstrates how the addition of steel slag filler contributes to the resistance of asphalt mastic under the environment of acid and alkaline but is harmful under UV radiation especially. In addition, the pore structure in steel slag filler should be a potential explanation for the changing resistance of the asphalt mastics. In conclusion, steel slag filler is suggested to replace limestone filler under the environment of acid and alkaline, and environmental factor should be taken into consideration when steel slag filler is applied to replace natural fillers in asphalt mastic.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 663 ◽  
Author(s):  
Baowen Lou ◽  
Zhuangzhuang Liu ◽  
Aimin Sha ◽  
Meng Jia ◽  
Yupeng Li

Excessive usage of non-renewable natural resources and massive construction wastes put pressure on the environment. Steel slags, the main waste material from the metal industry, are normally added in asphalt concrete to replace traditional aggregate. In addition, as a typical microwave absorber, steel slag has the potential to transfer microwave energy into heat, thus increasing the limited self-healing ability of asphalt mixture. This paper aims to investigate the microwave absorption potentials of steel slag and the effect of its addition on road performance. The magnetic parameters obtained from a microwave vector network analyzer were used to estimate the potential use of steel slag as microwave absorber to heal cracks. Meanwhile, the initial self-healing temperature was further discussed according to the frequency sweeping results. The obvious porous structure of steel slag observed using scanning electron microscopy (SEM) had important impacts on the road performance of asphalt mixtures. Steel slag presented a worse effect on low-temperature crack resistance and water stability, while high-temperature stability can be remarkably enhanced when the substitution of steel slag was 60% by volume with the particle size of 4.75–9.5 mm. Overall, the sustainability of asphalt mixtures incorporating steel slag can be promoted due to its excellent mechanical and microwave absorption properties.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3211 ◽  
Author(s):  
Zhifeng Xiao ◽  
Meizhu Chen ◽  
Shaopeng Wu ◽  
Jun Xie ◽  
Dezhi Kong ◽  
...  

The primary objective of this paper was to investigate the effect of replacing steel slag powder (SSP) with limestone filler (LF) with different contents as an inorganic anti-stripping agent on the moisture susceptibility of asphalt mixtures. Two traditional inorganic anti-stripping agents were selected for comparison, namely cement (CE) and slaked lime (SL). Apparent morphology, chemical compositions, and the particle size distribution of the four fillers were firstly studied. LF was replaced by SSP, CE, and SL with different contents, and then mixed with asphalt to prepare asphalt mortars. An 80 °C water immersion test was conducted to investigate the adhesion of asphalt mortar and aggregates, and an image analysis technique was utilized to evaluate the stripping of asphalt from the aggregates. A Marshall stability test and freeze-thaw split test were then conducted to analyze the effect of different fillers on the moisture susceptibility of asphalt mixtures. The results show that SSP contains a large amount of CaO, which indicates that SSP has a certain alkalinity. Compared with LF, SSP has a rougher surface texture and a finer particle size. Image analysis results show that the partially replacement of LF by SSP increases the asphalt coverage rate of aggregates, which means that SSP can improve the adhesion between asphalt mortar and aggregates. However, the excessive addition of SSP will result in a decrease in adhesion. The results of both the Marshall stability test and freeze-thaw split test demonstrate that CE, SL, and SSP can improve the moisture susceptibility of asphalt mixtures compared with the LF group, and that asphalt mixtures containing SSP have better moisture damage resistance than those with CE, but less such resistance than those with SL. With the increase of the amount of SSP replacing LF, the moisture susceptibility of the asphalt mixture decreases gradually. The optimum substitution amount of SSP was 25% of the total volume of fillers in this test.


2018 ◽  
Vol 129 ◽  
pp. 871-883 ◽  
Author(s):  
Yihan Sun ◽  
Shaopeng Wu ◽  
Quantao Liu ◽  
Jianfu Hu ◽  
Yuan Yuan ◽  
...  

Author(s):  
Hao Fang ◽  
Yihan Sun ◽  
Quantao Liu ◽  
Bin Li ◽  
Shaopeng Wu ◽  
...  

2021 ◽  
Vol 4 (4) ◽  
pp. 875
Author(s):  
Alida Danar Saputra ◽  
Anissa Noor Tajudin

Steel waste is waste generated from a large or small amount of steel production process. The results of steel waste disposal can pollute the environment if not done a good treatment and countermeasure so that it has value benefits. This study uses steel lathe waste additives to determine the self-healing ability of asphalt in the AC-WC mixture. Steel lathe waste used with varying degrees of steel lathe 0%, 0,25%, 0,5%, 0,75%, 1% and asphalt content used by 5,5%. After obtaining the data used in the study, samples were made for asphalt mixtures with varying degrees. Then the finished sample is divided into 4 parts to be tested for temperature rise on each steel lathe mixture using a thermal camera. And tested using a threepoint bending test to determine the ability of asphalt selfhealing in the AC-WC mixture that occurs for 5 cycles with a heating duration of 20 seconds, 40 seconds, 60 seconds. From the results of the research on the content of a mixture of 0% steel lathe proved the sample can do self-healing but the results obtained are not as good as when using variations in the added ingredients of steel fiber mixture 0,25%, 0,5%, 0,75% and 1%. ABSTRAKLimbah baja adalah buangan yang dihasilkan dari suatu proses produksi baja baik dalam jumlah yang besar atau sedikit. Hasil buangan limbah baja dapat mecemari lingkungan apabila tidak dilakukan pengolahan dan penanggulangan yang baik sehingga memiliki nilai manfaat. Penelitian ini menggunakan bahan tambahan limbah bubutan baja untuk dapat mengetahui kemampuan self healing aspal pada campuran AC-WC. Limbah bubutan baja yang digunakan dengan kadar variasi bubutan baja 0%, 0,25%, 0,5%, 0,75%, 1% dan kadar aspal yang dipakai sebesar 5,5%. Setelah didapatkan data yang dipakai dalam penelitian dilakukan pembuatan sampel terhadap campuran aspal dengan variasi kadar. Kemudian sampel yang telah jadi di belah menjadi 4 bagian untuk diuji kenaikan temperatur pada setiap campuran bubutan baja dengan menggunakan kamera thermal. Serta diuji dengan menggunakan alat threepoint bending test untuk mengetahui kemampuan selfhealing aspal pada campuran AC-WC yang terjadi selama 5 siklus dengan durasi pemanasan 20 detik, 40 detik, 60 detik. Dari hasil penelitian pada kadar campuran bubutan baja 0% terbukti sampel dapat melakukan self healing tetapi hasil yang didapatkan tidak sebaik ketika menggunakan variasi bahan tambah campuran serat baja 0,25%, 0,5%, 0,75% dan 1%.


2018 ◽  
Author(s):  
Adham Mohammed Alnadish ◽  
Mohamad Yusri Aman

This study aimed to provide a novel contribution in terms of introducing a better understanding for evaluating the resistance of the reinforced asphalt mixtures to permanent deformation. The resistance of asphalt mixtures to permanent deformation was assessed using dynamic creep test at a temperature of 40 °C. Four mixtures named Mix1, Mix2, Mix3, and Mix 4 were evaluated, Mix1 corresponds to the control mixture that containing coarse steel slag aggregate while Mix2, Mix3, and Mix4 represent the reinforced mixtures with polyester fiber at the proportions of 0.05, 0.15, and 0.3%, respectively. The findings of this study showed that the elastic deformation occurred at the primary stage has a negative influence regarding the permanent deformation assessment. In addition, increasing the content of the polyester fiber has a positive relationship with the elastic stage; the higher the proportion of the fiber, the higher the deformation at the elastic stage, which have a negative effect on the evaluation of the mixtures resistance to permanent deformation, if the deformation occurred at the elastic stage is not neglected. On the other hand, the mixtures containing a high content of polyester fiber exhibited better resistance to the permanent deformation at the viscoelastic stage


Sign in / Sign up

Export Citation Format

Share Document