scholarly journals Body Integrity Identity Disorder: A review of current knowledge and management options

2021 ◽  
Vol 23 (3) ◽  
pp. 11-16
Author(s):  
Daniel Aigbonoga ◽  
Deborah Adebambo ◽  
Taye Owoputi ◽  
Joshua Obarombi
2021 ◽  
Vol 1 (1) ◽  
pp. 84-95
Author(s):  
Patience O. Obi ◽  
Jennifer E. Kent ◽  
Maya M. Jeyaraman ◽  
Nicole Askin ◽  
Taiana M. Pierdoná ◽  
...  

Asthma is the most common pediatric disease, characterized by chronic airway inflammation and airway hyperresponsiveness. There are several management options for asthma, but no specific treatment. Extracellular vesicles (EVs) are powerful cellular mediators of endocrine, autocrine and paracrine signalling, and can modulate biophysiological function in vitro and in vivo. A thorough investigation of therapeutic effects of EVs in asthma has not been conducted. Therefore, this systematic review is designed to synthesize recent literature on the therapeutic effects of EVs on physiological and biological outcomes of asthma in pre-clinical studies. An electronic search of Web of Science, EMBASE, MEDLINE, and Scopus will be conducted on manuscripts published in the last five years that adhere to standardized guidelines for EV research. Grey literature will also be included. Two reviewers will independently screen the selected studies for title and abstract, and full text based on the eligibility criteria. Data will be extracted, narratively synthesized and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. This systematic review will summarize the current knowledge from preclinical studies investigating the therapeutic effects of EVs on asthma. The results will delineate whether EVs can mitigate biological hallmarks of asthma, and if so, describe the underlying mechanisms involved in the process. This insight is crucial for identifying key pathways that can be targeted to alleviate the burden of asthma. The data will also reveal the origin, dosage and biophysical characteristics of beneficial EVs. Overall, our results will provide a scaffold for future intervention and translational studies on asthma treatment.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Kendall A. Johnson ◽  
Clive H. Bock ◽  
Phillip M. Brannen

Abstract Background Phony peach disease (PPD) is caused by the plant pathogenic bacterium Xylella fastidiosa subsp. multiplex (Xfm). Historically, the disease has caused severe yield loss in Georgia and elsewhere in the southeastern United States, with millions of PPD trees being removed from peach orchards over the last century. The disease remains a production constraint, and management options are few. Limited research has been conducted on PPD since the 1980s, but the advent of new technologies offers the opportunity for new, foundational research to form a basis for informed management of PPD in the U.S. Furthermore, considering the global threat of Xylella to many plant species, preventing import of Xfm to other regions, particularly where peach is grown, should be considered an important phytosanitary endeavor. Main topics We review PPD, its history and impact on peach production, and the eradication efforts that were conducted for 42 years. Additionally, we review the current knowledge of the pathogen, Xfm, and how that knowledge relates to our understanding of the peach—Xylella pathosystem, including the epidemiology of the disease and consideration of the vectors. Methods used to detect the pathogen in peach are discussed, and ramifications of detection in relation to management and control of PPD are considered. Control options for PPD are limited. Our current knowledge of the pathogen diversity and disease epidemiology are described, and based on this, some potential areas for future research are also considered. Conclusion There is a lack of recent foundational research on PPD and the associated strain of Xfm. More research is needed to reduce the impact of this pathogen on peach production in the southeastern U.S., and, should it spread internationally, wherever peaches are grown.


Heart ◽  
2019 ◽  
Vol 105 (13) ◽  
pp. 1027-1033 ◽  
Author(s):  
Johnny Chahine ◽  
Chandra K Ala ◽  
James L Gentry ◽  
Kevin M Pantalone ◽  
Allan L Klein

Hypothyroidism is a well-known cause of pericardial effusion (with an incidence of 3%–37%) and can cause cardiac tamponade in severe cases. In this review, we present the current knowledge on the epidemiology of hypothyroid-induced pericardial diseases, the mechanism through which low thyroid hormone levels affect the pericardium, the associated clinical manifestations, diagnostic tests and management options. Hypothyroidism causes pericardial effusion through increased permeability of the epicardial vessels and decreased lymphatic drainage of albumin, resulting in accumulation of fluid in the pericardial space. Interestingly, autoimmunity does not seem to play a major role in the pathophysiology, and a majority of effusions are asymptomatic due to slow fluid accumulation. The diagnosis is generally made when the pericardial disease is associated with an elevated thyroid-stimulating hormone level, and other secondary causes are excluded. Management consists of thyroid replacement therapy, along with pericardial drainage in case of tamponade.In conclusion, hypothyroidism-induced pericardial diseases are underdiagnosed. Initiating treatment early in the disease process and preventing complications relies on early diagnosis through systematic screening per guidelines.


2015 ◽  
Vol 43 (2) ◽  
Author(s):  
Patrik Šimják ◽  
Antonín Pařízek ◽  
Libor Vítek ◽  
Andrej Černý ◽  
Karolína Adamcová ◽  
...  

AbstractIntrahepatic cholestasis of pregnancy (ICP) is the most common liver disorder of pregnancy. Diagnosis is based on the clinical picture, particularly the presence of pruritus with a deterioration of liver function tests, and typically elevated serum levels of total bile acids. ICP manifests in the second half of pregnancy, predominantly during the third trimester. Symptoms of the disease resolve spontaneously after delivery. Etiology is still not fully understood. Genetic defects in specific transport proteins, elevated levels of sex hormones, and various environmental factors are thought to play a role in the development of this disorder. Although practically benign for the pregnant woman, ICP represents a serious threat to the fetus. It increases the risk of preterm delivery, meconium excretion into the amniotic fluid, respiratory distress syndrome, and sudden intrauterine fetal death. Identifying fetuses at risk of ICP complications remains challenging. The ideal obstetrical management of ICP needs to be definitively determined. The aim of this review is to summarize the current knowledge on fetal complications of ICP and describe management options for their prevention.


AMBIO ◽  
2021 ◽  
Vol 50 (4) ◽  
pp. 753-758 ◽  
Author(s):  
Erik Bonsdorff

AbstractEutrophication, i.e. nutrient over-enrichment, has been a topic for academic and societal debate for the past five decades both on land and in aquatic systems fed by nutrients as diffuse loading from agricultural lands and as wastewater from industrial and municipal point-sources. The use of nutrients (primarily nitrogen and phosphorus) in excess became a problem with the onset of large-scale production and use of artificial fertilizers after World War II, and the effects on the aquatic environment became obvious some two to three decades later. In this Perspective, four seminal papers on eutrophication are discussed in light of the current knowledge of the problem, including future perspectives and outlooks in the light of global climate change and the demand for science-based holistic ecosystem-level policies and management options.


2021 ◽  
Vol 7 (12) ◽  
pp. 1095
Author(s):  
Muhammad Aslam Rajput ◽  
Nasir Ahmed Rajput ◽  
Rehana Naz Syed ◽  
Abdul Mubeen Lodhi ◽  
Youxiong Que

Whip smut of sugarcane is the most serious and widely spread disease of sugarcane and causes a significant reduction in cane quantity and quality. The severity of this disease often depends on the pathogen races, environmental conditions, cultivar genotype and the interaction among these three factors. Under optimum climatic conditions, this disease has the potential to cause total crop failure. Resistance screening is an ongoing process due to the variability among smut pathogen isolates. Multiple races and mutation ability of smut pathogen makes the breeding task more complex. A number of studies on various aspects of the disease epidemiology and management have been published. Due to many overlapping characteristics within the species complex, there is a dearth of information on early detection and strategies to control the smut pathogen. Furthermore, there is a need to coordinate these findings to expedite its research and control. In this paper, we summarize the disease etiology, especially disease impact on the qualitative and quantitative parameters of sugarcane. We also gathered research progress on molecular-based detection and available information on genetic variability in S. scitamineum. The research on the set of management options needed to effectively cope with the disease are reviewed herein. The present review is expected to be helpful for the further investigation on smut resistance in sugarcane.


2016 ◽  
Vol 56 (8) ◽  
pp. 1317 ◽  
Author(s):  
J. V. Nolan ◽  
I. R. Godwin ◽  
V. de Raphélis-Soissan ◽  
R. S. Hegarty

Inclusion of nitrate (NO3−) in ruminant diets is a means of increasing non-protein nitrogen intake while at the same time reducing emissions of enteric methane (CH4) and, in Australia, gaining carbon credits. Rumen microorganisms contain intracellular enzymes that use hydrogen (H2) released during fermentation to reduce NO3− to nitrite (NO2−), and then reduce the resulting NO2− to ammonia or gaseous intermediates such as nitrous oxide (N2O) and nitric oxide (NO). This diversion of H2 reduces CH4 formation in the rumen. If NO2− accumulates in the rumen, it may inhibit growth of methanogens and other microorganisms and this may further reduce CH4 production, but also lower feed digestibility. If NO2− is absorbed and enters red blood cells, methaemoglobin is formed and this lowers the oxygen-carrying capacity of the blood. Nitric oxide produced from absorbed NO2− reduces blood pressure, which, together with the effects of methaemoglobin, can, at times, lead to extreme hypoxia and death. Nitric oxide, which can be formed in the gut as well as in tissues, has a variety of physiological effects, e.g. it reduces primary rumen contractions and slows passage of digesta, potentially limiting feed intake. It is important to find management strategies that minimise the accumulation of NO2−; these include slowing the rate of presentation of NO3– to rumen microbes or increasing the rate of removal of NO2−, or both. The rate of reduction of NO3− to NO2− depends on the level of NO3− in feed and its ingestion rate, which is related to the animal’s feeding behaviour. After NO3− is ingested, its peak concentration in the rumen depends on its rate of solubilisation. Once in solution, NO3− is imported by bacteria and protozoa and quickly reduced to NO2−. One management option is to encapsulate the NO3− supplement to lower its solubility. Acclimating animals to NO3− is an established management strategy that appears to limit NO2− accumulation in the rumen by increasing microbial nitrite reductase activity more than nitrate reductase activity; however, it does not guarantee complete protection from NO2− poisoning. Adding concentrates into nitrate-containing diets also helps reduce the risk of poisoning and inclusion of microbial cultures with enhanced NO2−-reducing properties is another potential management option. A further possibility is to inhibit NO2− absorption. Animals differ in their tolerance to NO3− supplementation, so there may be opportunities for breeding animals more tolerant of dietary NO3−. Our review aims to integrate current knowledge of microbial processes responsible for accumulation of NO2− in rumen fluid and to identify management options that could minimise the risks of NO2− poisoning while reducing methane emissions and maintaining or enhancing livestock production.


2009 ◽  
Vol 60 (2) ◽  
pp. 163 ◽  
Author(s):  
A. M. McNeill ◽  
C. M. Penfold

Maintenance of available phosphorus (P) is a problem faced by both conventional and organic systems but it is exacerbated in the latter given that manufactured inorganic sources of P fertiliser are not permitted under the International Federation of Organic Agriculture Movements certification guidelines. The focus of this paper is a discussion of potential agronomic strategies to assist in sustainable management of the soil P resource in organic and low-input broadacre farming systems within the Australian rain-fed cereal–livestock belt. The paper considers three broad strategies for agronomic management of P in this context and draws on reported research from overseas and within Australia. An analysis of the current knowledge suggests that the option most likely to ensure that soluble P is not a limitation in the system is the importation of allowable inputs that contain P from off-farm, although for much of the Australian cereal–livestock belt the immediate issue may be access to economically viable sources. Research targeted at quantifying the economic and biological benefits to the whole-farm system associated with the adoption of these practices is required. Improving the P-use efficiency of the system by incorporating species into rotation or intercropping systems that are able to use P from less soluble sources has been a successful strategy in parts of the world with climate similar to much of the Australian cereal–sheep belt, and deserves further research effort in Australia. Agronomic management to maximise quantity and quality of pasture and crop plant residues undoubtedly builds labile soil organic matter and facilitates P cycling, but the strategy may be of limited benefit in low-rainfall areas that do not have the capacity to produce large biomass inputs. Evidence that organic or low-input systems naturally increase the numbers and diversity of soil organisms is sparse and published studies from Australian systems suggest that P nutrition is not enhanced. However, seed and soil microbial inoculants to facilitate improved P uptake have been developed and are currently being field tested in Australia. Progress in selection and breeding for cereal genotypes that are more P efficient and other plant genotypes that can use less labile P sources, is gaining momentum but still remains a long-term prospect, and may involve genetic modification which will not be acceptable for organic systems.


2009 ◽  
Vol 31 (1) ◽  
pp. 137 ◽  
Author(s):  
S. G. Bray ◽  
R. Golden

The emerging carbon economy will have a major impact on grazing businesses because of significant livestock methane and land-use change emissions. Livestock methane emissions alone account for ~11% of Australia’s reported greenhouse gas emissions. Grazing businesses need to develop an understanding of their greenhouse gas impact and be able to assess the impact of alternative management options. This paper attempts to generate a greenhouse gas budget for two scenarios using a spread sheet model. The first scenario was based on one land-type ‘20-year-old brigalow regrowth’ in the brigalow bioregion of southern-central Queensland. The 50 year analysis demonstrated the substantially different greenhouse gas outcomes and livestock carrying capacity for three alternative regrowth management options: retain regrowth (sequester 71.5 t carbon dioxide equivalents per hectare, CO2-e/ha), clear all regrowth (emit 42.8 t CO2-e/ha) and clear regrowth strips (emit 5.8 t CO2-e/ha). The second scenario was based on a ‘remnant eucalypt savanna-woodland’ land type in the Einasleigh Uplands bioregion of north Queensland. The four alternative vegetation management options were: retain current woodland structure (emit 7.4 t CO2-e/ha), allow woodland to thicken increasing tree basal area (sequester 20.7 t CO2-e/ha), thin trees less than 10 cm diameter (emit 8.9 t CO2-e/ha), and thin trees <20 cm diameter (emit 12.4 t CO2-e/ha). Significant assumptions were required to complete the budgets due to gaps in current knowledge on the response of woody vegetation, soil carbon and non-CO2 soil emissions to management options and land-type at the property scale. The analyses indicate that there is scope for grazing businesses to choose alternative management options to influence their greenhouse gas budget. However, a key assumption is that accumulation of carbon or avoidance of emissions somewhere on a grazing business (e.g. in woody vegetation or soil) will be recognised as an offset for emissions elsewhere in the business (e.g. livestock methane). This issue will be a challenge for livestock industries and policy makers to work through in the coming years.


Sign in / Sign up

Export Citation Format

Share Document