Upgrading the Performance of Machine Learning Based Chronic Disease Prediction Systems using Stacked Generalization Technique

2021 ◽  
Vol 10 (1) ◽  
pp. 1031-1039
Author(s):  
Ekta Maini ◽  
Bondu Venkateswarlu ◽  
Dheeraj Marwaha ◽  
Baljeet Maini

Utilizing big data growth in biological and health communities, an accurate analogy of medical data can benefit the detection of diabetes impacting cardiovascular diseases. Using k-Means clustering (kMC) algorithm for structured data of heart disease patients, we narrow down to cardiovascular diseases impacted by diabetes. To our knowledge, none of the previous work focused on predicting heart diseases specifically for diabetes patients. Contrasted to multiple other prediction algorithms, the accuracy of predicting in our proposed algorithm is faster than that of other prediction systems for cardiovascular diseases.


Our work aims for economical disease diagnostics, by asking the user for Prognosis and symptoms, accurate disease prediction has been strived for. In aspiration for social welfare, the cost of using the product built is almost free, the prediction can be done using any one of the six algorithms, five out of which are total free of cost for use, those five being KNN, Naïve Bayes, SVM , Logistic Regression, K Means Classifier. The one, that gives out predictions with most accuracy, i.e., Decision Trees Classifier, has been made paid, others are not to be paid for, for using.How this product would be functioning is simple: User logs in , openCV has been used for it, that brings the user to the section where user is briefed about models working on different algorithms, each algorithm having different accuracy, thus further, which model he/ she should choose. On choosing model of their choice, they fill their symptoms and prognosis, that yields them their final result of name of their disease.Services like these are greatly needed , looking at large many number of people in our society, who are unfortunately not able to afford them, when priced heavily, or even moderately. Such products can help save many a lives, notify sufferer about his chronic disease at early stage, inform about deficiency diseases, that are very controllable, if get known about, early.


Author(s):  
Stuti Pandey ◽  
Abhay Kumar Agarwal

In a human body, the heart is the second primary organ after the brain. It causes either a long-term impairment or death of a person if suffering from a cardiovascular disease. In medical science, a proper medical analysis and examination of a cardiovascular disease is very crucial, convincing, and sophisticated task for saving a human life. Data analytics rises because of the absence of sufficient practical tools for exploring the trends and unknown relationships in e-health records. It predicts and achieves information which can ease the diagnosis. This survey examines cardiovascular disease prediction systems developed by different researchers. It also reviews the trend of machine learning approaches used in the past decade with results. Related studies comprise the performance of various classifiers on distinct datasets.


IJARCCE ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 287-292
Author(s):  
Meghana M ◽  
Shashank S ◽  
Tojo Mathew

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haohui Lu ◽  
Shahadat Uddin

AbstractChronic disease prediction is a critical task in healthcare. Existing studies fulfil this requirement by employing machine learning techniques based on patient features, but they suffer from high dimensional data problems and a high level of bias. We propose a framework for predicting chronic disease based on Graph Neural Networks (GNNs) to address these issues. We begin by projecting a patient-disease bipartite graph to create a weighted patient network (WPN) that extracts the latent relationship among patients. We then use GNN-based techniques to build prediction models. These models use features extracted from WPN to create robust patient representations for chronic disease prediction. We compare the output of GNN-based models to machine learning methods by using cardiovascular disease and chronic pulmonary disease. The results show that our framework enhances the accuracy of chronic disease prediction. The model with attention mechanisms achieves an accuracy of 93.49% for cardiovascular disease prediction and 89.15% for chronic pulmonary disease prediction. Furthermore, the visualisation of the last hidden layers of GNN-based models shows the pattern for the two cohorts, demonstrating the discriminative strength of the framework. The proposed framework can help stakeholders improve health management systems for patients at risk of developing chronic diseases and conditions.


2021 ◽  
Vol 10 (1) ◽  
pp. 46
Author(s):  
Maria Yousef ◽  
Prof. Khaled Batiha

These days, heart disease comes to be one of the major health problems which have affected the lives of people in the whole world. Moreover, death due to heart disease is increasing day by day. So the heart disease prediction systems play an important role in the prevention of heart problems. Where these prediction systems assist doctors in making the right decision to diagnose heart disease easily. The existing prediction systems suffering from the high dimensionality problem of selected features that increase the prediction time and decrease the performance accuracy of the prediction due to many redundant or irrelevant features. Therefore, this paper aims to provide a solution of the dimensionality problem by proposing a new mixed model for heart disease prediction based on (Naïve Bayes method, and machine learning classifiers).In this study, we proposed a new heart disease prediction model (NB-SKDR) based on the Naïve Bayes algorithm (NB) and several machine learning techniques including Support Vector Machine, K-Nearest Neighbors, Decision Tree, and Random Forest. This prediction model consists of three main phases which include: preprocessing, feature selection, and classification. The main objective of this proposed model is to improve the performance of the prediction system and finding the best subset of features. This proposed approach uses the Naïve Bayes technique based on the Bayes theorem to select the best subset of features for the next classification phase, also to handle the high dimensionality problem by avoiding unnecessary features and select only the important ones in an attempt to improve the efficiency and accuracy of classifiers. This method is able to reduce the number of features from 13 to 6 which are (age, gender, blood pressure, fasting blood sugar, cholesterol, exercise induce engine) by determining the dependency between a set of attributes. The dependent attributes are the attributes in which an attribute depends on the other attribute in deciding the value of the class attribute. The dependency between attributes is measured by the conditional probability, which can be easily computed by Bayes theorem. Moreover, in the classification phase, the proposed system uses different classification algorithms such as (DT Decision Tree, RF Random Forest, SVM Support Vector machine, KNN Nearest Neighbors) as a classifiers for predicting whether a patient has heart disease or not. The model is trained and evaluated using the Cleveland Heart Disease database, which contains 13 features and 303 samples.Different algorithms use different rules for producing different representations of knowledge. So, the selection of algorithms to build our model is based on their performance. In this work, we applied and compared several classification algorithms which are (DT, SVM, RF, and KNN) to identify the best-suited algorithm to achieve high accuracy in the prediction of heart disease. After combining the Naive Bayes method with each one of these previous classifiers the performance of these combines algorithms is evaluated by different performance metrics such as (Specificity, Sensitivity, and Accuracy). Where the experimental results show that out of these four classification models, the combination between the Naive Bayes feature selection approach and the SVM RBF classifier can predict heart disease with the highest accuracy of 98%. Finally, the proposed approach is compared with another two systems which developed based on two different approaches in the feature selection step. The first system, based on the Genetic Algorithm (GA) technique, and the second uses the Principal Component Analysis (PCA) technique. Consequently, the comparison proved that the Naive Bayes selection approach of the proposed system is better than the GA and PCA approach in terms of prediction accuracy.   


Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


Author(s):  
Matthew N. O. Sadiku ◽  
Chandra M. M Kotteti ◽  
Sarhan M. Musa

Machine learning is an emerging field of artificial intelligence which can be applied to the agriculture sector. It refers to the automated detection of meaningful patterns in a given data.  Modern agriculture seeks ways to conserve water, use nutrients and energy more efficiently, and adapt to climate change.  Machine learning in agriculture allows for more accurate disease diagnosis and crop disease prediction. This paper briefly introduces what machine learning can do in the agriculture sector.


Sign in / Sign up

Export Citation Format

Share Document