Predicting Stages in Omnichannel Path to Purchase: A Deep Learning Model

Author(s):  
Chenshuo Sun ◽  
Panagiotis Adamopoulos ◽  
Anindya Ghose ◽  
Xueming Luo

The proliferation of omnichannel practices and emerging technologies opens up new opportunities for companies to collect voluminous data across multiple channels. This study examines whether leveraging omnichannel data can lead to, statistically and economically, significantly better predictions on consumers’ online path-to-purchase journeys, given the intrinsic fluidity in and heterogeneity brought forth by digital transformation of traditional marketing. Using an omnichannel data set that captures consumers’ online behavior in terms of their website browsing trajectories and their offline behavior in terms of physical location trajectories, we predict consumers’ future path-to-purchase journeys based on their historical omnichannel behaviors. Using a state-of-the-art deep-learning algorithm, we find that using omnichannel data can significantly improve our model’s predictive power. This enhanced predictive power benefits various heterogeneous online firms, regardless of their size, offline presence, mobile app availability, or whether they are selling single- or multi-category products. Using an illustrative example of targeted marketing, we further quantify the economic value of the improved predictive power and the value of data.

Author(s):  
Usman Ahmed ◽  
Jerry Chun-Wei Lin ◽  
Gautam Srivastava

Deep learning methods have led to a state of the art medical applications, such as image classification and segmentation. The data-driven deep learning application can help stakeholders to collaborate. However, limited labelled data set limits the deep learning algorithm to generalize for one domain into another. To handle the problem, meta-learning helps to learn from a small set of data. We proposed a meta learning-based image segmentation model that combines the learning of the state-of-the-art model and then used it to achieve domain adoption and high accuracy. Also, we proposed a prepossessing algorithm to increase the usability of the segments part and remove noise from the new test image. The proposed model can achieve 0.94 precision and 0.92 recall. The ability to increase 3.3% among the state-of-the-art algorithms.


GEOMATICA ◽  
2021 ◽  
pp. 1-23
Author(s):  
Roholah Yazdan ◽  
Masood Varshosaz ◽  
Saied Pirasteh ◽  
Fabio Remondino

Automatic detection and recognition of traffic signs from images is an important topic in many applications. At first, we segmented the images using a classification algorithm to delineate the areas where the signs are more likely to be found. In this regard, shadows, objects having similar colours, and extreme illumination changes can significantly affect the segmentation results. We propose a new shape-based algorithm to improve the accuracy of the segmentation. The algorithm works by incorporating the sign geometry to filter out the wrong pixels from the classification results. We performed several tests to compare the performance of our algorithm against those obtained by popular techniques such as Support Vector Machine (SVM), K-Means, and K-Nearest Neighbours. In these tests, to overcome the unwanted illumination effects, the images are transformed into colour spaces Hue, Saturation, and Intensity, YUV, normalized red green blue, and Gaussian. Among the traditional techniques used in this study, the best results were obtained with SVM applied to the images transformed into the Gaussian colour space. The comparison results also suggested that by adding the geometric constraints proposed in this study, the quality of sign image segmentation is improved by 10%–25%. We also comparted the SVM classifier enhanced by incorporating the geometry of signs with a U-Shaped deep learning algorithm. Results suggested the performance of both techniques is very close. Perhaps the deep learning results could be improved if a more comprehensive data set is provided.


CONVERTER ◽  
2021 ◽  
pp. 598-605
Author(s):  
Zhao Jianchao

Behind the rapid development of the Internet industry, Internet security has become a hidden danger. In recent years, the outstanding performance of deep learning in classification and behavior prediction based on massive data makes people begin to study how to use deep learning technology. Therefore, this paper attempts to apply deep learning to intrusion detection to learn and classify network attacks. Aiming at the nsl-kdd data set, this paper first uses the traditional classification methods and several different deep learning algorithms for learning classification. This paper deeply analyzes the correlation among data sets, algorithm characteristics and experimental classification results, and finds out the deep learning algorithm which is relatively good at. Then, a normalized coding algorithm is proposed. The experimental results show that the algorithm can improve the detection accuracy and reduce the false alarm rate.


2021 ◽  
Vol 8 ◽  
Author(s):  
Olle Holmberg ◽  
Tobias Lenz ◽  
Valentin Koch ◽  
Aseel Alyagoob ◽  
Léa Utsch ◽  
...  

Background: Optical coherence tomography is a powerful modality to assess atherosclerotic lesions, but detecting lesions in high-resolution OCT is challenging and requires expert knowledge. Deep-learning algorithms can be used to automatically identify atherosclerotic lesions, facilitating identification of patients at risk. We trained a deep-learning algorithm (DeepAD) with co-registered, annotated histopathology to predict atherosclerotic lesions in optical coherence tomography (OCT).Methods: Two datasets were used for training DeepAD: (i) a histopathology data set from 7 autopsy cases with 62 OCT frames and co-registered histopathology for high quality manual annotation and (ii) a clinical data set from 51 patients with 222 OCT frames in which manual annotations were based on clinical expertise only. A U-net based deep convolutional neural network (CNN) ensemble was employed as an atherosclerotic lesion prediction algorithm. Results were analyzed using intersection over union (IOU) for segmentation.Results: DeepAD showed good performance regarding the prediction of atherosclerotic lesions, with a median IOU of 0.68 ± 0.18 for segmentation of atherosclerotic lesions. Detection of calcified lesions yielded an IOU = 0.34. When training the algorithm without histopathology-based annotations, a performance drop of >0.25 IOU was observed. The practical application of DeepAD was evaluated retrospectively in a clinical cohort (n = 11 cases), showing high sensitivity as well as specificity and similar performance when compared to manual expert analysis.Conclusion: Automated detection of atherosclerotic lesions in OCT is improved using a histopathology-based deep-learning algorithm, allowing accurate detection in the clinical setting. An automated decision-support tool based on DeepAD could help in risk prediction and guide interventional treatment decisions.


2019 ◽  
Vol 28 (12) ◽  
pp. 1950153 ◽  
Author(s):  
Jing Tan ◽  
Chong-Bin Chen

We use the deep learning algorithm to learn the Reissner–Nordström (RN) black hole metric by building a deep neural network. Plenty of data are determined in boundary of AdS and we propagate them to the black hole horizon through AdS metric and equation of motion (e.o.m). We label these data according to the values near the horizon, and together with initial data they constitute a data set. Then we construct corresponding deep neural network and train it with the data set to obtain the Reissner–Nordström (RN) black hole metric. Finally, we discuss the effects of learning rate, batch-size and initialization on the training process.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1140
Author(s):  
Jeong-Hee Lee ◽  
Jongseok Kang ◽  
We Shim ◽  
Hyun-Sang Chung ◽  
Tae-Eung Sung

Building a pattern detection model using a deep learning algorithm for data collected from manufacturing sites is an effective way for to perform decision-making and assess business feasibility for enterprises, by providing the results and implications of the patterns analysis of big data occurring at manufacturing sites. To identify the threshold of the abnormal pattern requires collaboration between data analysts and manufacturing process experts, but it is practically difficult and time-consuming. This paper suggests how to derive the threshold setting of the abnormal pattern without manual labelling by process experts, and offers a prediction algorithm to predict the potentials of future failures in advance by using the hybrid Convolutional Neural Networks (CNN)–Long Short-Term Memory (LSTM) algorithm, and the Fast Fourier Transform (FFT) technique. We found that it is easier to detect abnormal patterns that cannot be found in the existing time domain after preprocessing the data set through FFT. Our study shows that both train loss and test loss were well developed, with near zero convergence with the lowest loss rate compared to existing models such as LSTM. Our proposition for the model and our method of preprocessing the data greatly helps in understanding the abnormal pattern of unlabeled big data produced at the manufacturing site, and can be a strong foundation for detecting the threshold of the abnormal pattern of big data occurring at manufacturing sites.


2021 ◽  
Vol 36 (1) ◽  
pp. 698-703
Author(s):  
Krushitha Reddy ◽  
D. Jenila Rani

Aim: The aim of this research work is to determine the presence of hyperthyroidism using modern algorithms, and comparing the accuracy rate between deep learning algorithms and vivo monitoring. Materials and methods: Data collection containing ultrasound images from kaggle's website was used in this research. Samples were considered as (N=23) for Deep learning algorithm and (N=23) for vivo monitoring in accordance to total sample size calculated using clinical.com. The accuracy was calculated by using DPLA with a standard data set. Results: Comparison of accuracy rate is done by independent sample test using SPSS software. There is a statistically indifference between Deep learning algorithm and in vivo monitoring. Deep learning algorithm (87.89%) showed better results in comparison to vivo monitoring (83.32%). Conclusion: Deep learning algorithms appear to give better accuracy than in vivo monitoring to predict hyperthyroidism.


Chemosensors ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 4
Author(s):  
Hyuk-Ju Kwon ◽  
Hwi-Gang Kim ◽  
Sung-Hak Lee

This paper proposes a deep learning algorithm that can improve pill identification performance using limited training data. In general, when individual pills are detected in multiple pill images, the algorithm uses multiple pill images from the learning stage. However, when there is an increase in the number of pill types to be identified, the pill combinations in an image increase exponentially. To detect individual pills in an image that contains multiple pills, we first propose an effective database expansion method for a single pill. Then, the expanded training data are used to improve the detection performance. Our proposed method shows higher performance improvement than the existing algorithms despite the limited imaging and data set size. Our proposed method will help minimize problems, such as loss of productivity and human error, which occur while inspecting dispensed pills.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ibtehal Talal Nafea

Purpose This study aims to propose a new simulation approach for a real-life large and complex crowd management which takes into account deep learning algorithm. Moreover, the proposed model also determines the crowd level and also sends an alarm to avoid the crowd from exceeding its limit. Also, the model estimates crowd density in the pictures through which the study evaluates the deep learning algorithm approach to address the problem of crowd congestion. Furthermore, the suggested model comprises of two main components. The first takes the images of the moving crowd and classifies them into five categories such as “heavily crowded, crowded, semi-crowded, light crowded and normal,” whereas the second one comprises of colour warnings (five). The colour of these lights depends upon the results of the process of classification. The paper is structured as follows. Section 2 describes the theoretical background; Section 3 suggests the proposed approach followed by convolutional neural network (CNN) algorithm in Section 4. Sections 5 and 6 explain the data set and parameters as well as modelling network. Experiment, results and simulation evaluation are explained in Sections 7 and 8. Finally, this paper ends with conclusion which is Section 9 of this paper. Design/methodology/approach This paper addresses the issue of large-scale crowd management by exploiting the techniques and algorithms of simulation and deep learning. It focuses on a real-life case study of Hajj pilgrimage in Saudi Arabia that exhibits intricate pattern of crowd management. Hajj pilgrimage includes performing Umrah along with hajj that involves several steps which is a sacred prayer of Muslims performed at different time span of the year. Muslims from all over the world visit the holy city of Mecca to perform Tawaf that is one of the stages included in the performance of Hajj or Umrah, it is an obligatory step in prayer. Accordingly, all pilgrims require visiting Mataf to perform Tawaf. It is essential to control the crowd performing Tawaf systematically in a constrained place to avoid any mishap. This study proposed a model for crowd management system by using image classification and a system of alarm to manage millions of people during Hajj. This proposed system highly depends on the adequate data set used to train CNN which is a deep learning technique and has recently drawn the attention of the research community as well as the industry in changing applications of image classification and the recognition of speed. The purpose is to train the model with mapped image data, making it available to be used in classifying the crowd into five categories like crowded, heavily crowded, semi-crowded, normal and light-crowded. The results produce adequate signals as they prove to be helpful in terms of monitoring the pilgrims which shows its usefulness. Findings After the first attempt of adding the first convolutional layer with 32 filters, the accuracy is not good and stands out at about 55%. Therefore, the algorithm is further improved by adding the second layer with 64 filters. This attempt is a success as it gives more improved results with an accuracy of 97%. After using the dropout fraction as a 0.5 to prevent overfitting, the test and training accuracy of 98% is achieved which is acceptable training and testing accuracy. Originality/value This study has proposed a model to solve the problem related to estimation of the level of congestion to avoid any accidents from happening because of it. This can be applied to the monitoring schemes that are used during Hajj, especially in crowd management during Tawaf. The model works as such that it activates an alarm when the default crowd limit exceeds. In this way, chances of the crowd reaching a dangerous level are reduced which minimizes the potential accidents that might take place. The model has a traffic light system, the appearance of red light means that the number of pilgrims in a particular area has exceeded its default limit and then it alerts to stop the migration of people to that particular area. The yellow light indicates that the number of pilgrims entering and leaving a particular area has equalized, then the pilgrims are suggested to slower their pace. Finally, the green light shows that the level of the crowd in a particular area is low and that the pilgrims can move freely in that area. The proposed model is simple and user friendly as it uses the most common traffic light system which makes it easier for the pilgrims to understand and follow accordingly.


2021 ◽  
Vol 37 (1) ◽  
pp. 123-134
Author(s):  
Jiangtao Ji ◽  
Xu Zhu ◽  
Hao Ma ◽  
Hui Wang ◽  
Xin Jin ◽  
...  

HIGHLIGHTSA deep learning algorithm with an improved lightweight network was used to identify apple fruit.Multiscale pooling was used to reduce the image size and enrich the features.Compound scaling was used to scale the basic network.The optimal compound scaling coefficient for apple identification was obtained with the WOA algorithm.The proposed method achieved an average recognition precision rate of 94.43% and a speed of 0.051s.ABSTRACT. Accurate fruit identification is the basis for automating the operation of orchard production. To better apply the identification model in mobile devices so that venue becomes a less restrictive factor for application, this study proposes an apple fruit identification method based on an improved lightweight network named “MobileNetV3-Small.” The whale optimization algorithm was introduced to improve the model by obtaining an optimal compound-scaling coefficient for the MobileNetV3-Small network. A multiscale pooling approach was used for fruit recognition, comprising operations such as lossless scaling and feature extraction on sample images. The obtained images were then inputted into the model for recognition and classification. The experimental process was conducted on an apple data set. The test results show that the multiclass average precision of apple recognition using this model was 94.43% and the running time of recognition was 0.051 s per image. Both indicators outperformed the control network models of “MobileNetV3-Small,” ResNet-50, and VGG-19. This model is 14.63% more accurate and 1.95 times quicker on average in identification than the next best model. These findings indicate that the method can realize high-efficiency and high-precision recognition of apples with high stability and portability, which lays a good foundation for the mechanization of repetitive operations such as orchard yield estimation, fruit labeling, and fruit picking. Keywords: Apple recognition, Compound scaling, Deep learning algorithm, Lightweight network, Yield estimation.


Sign in / Sign up

Export Citation Format

Share Document