scholarly journals Pathology of female mice experimentally infected with an in vitro cultured strain of Trypanosoma equiperdum

Author(s):  
Yusuke TANAKA ◽  
Keisuke SUGANUMA ◽  
Kenichi WATANABE ◽  
Yoshiyasu KOBAYASHI
2020 ◽  
Vol 27 ◽  
Author(s):  
Leydianne Leite de Siqueira Patriota ◽  
Dayane Kelly Dias do Nascimento Santos ◽  
Bárbara Rafaela da Silva Barros ◽  
Lethícia Maria de Souza Aguiar ◽  
Yasmym Araújo Silva ◽  
...  

Background: Protease inhibitors have been isolated from plants and present several biological activities, including immunomod-ulatory action. Objective: This work aimed to evaluate a Moringa oleifera flower trypsin inhibitor (MoFTI) for acute toxicity in mice, hemolytic activity on mice erythrocytes and immunomodulatory effects on mice splenocytes. Methods: The acute toxicity was evaluated using Swiss female mice that received a single dose of the vehicle control or MoFTI (300 mg/kg, i.p.). Behavioral alterations were observed 15–240 min after administration, and survival, weight gain, and water and food consumption were analyzed daily. Organ weights and hematological parameters were analyzed after 14 days. Hemolytic activity of MoFTI was tested using Swiss female mice erythrocytes. Splenocytes obtained from BALB/c mice were cultured in the absence or presence of MoFTI for the evaluation of cell viability and proliferation. Mitochondrial membrane potential (ΔΨm) and reactive oxygen species (ROS) levels were also determined. Furthermore, the culture supernatants were analyzed for the presence of cytokines and nitric oxide (NO). Results: MoFTI did not cause death or any adverse effects on the mice except for abdominal contortions at 15–30 min after administration. MoFTI did not exhibit a significant hemolytic effect. In addition, MoFTI did not induce apoptosis or necrosis in splenocytes and had no effect on cell proliferation. Increases in cytosolic and mitochondrial ROS release, as well as ΔΨm reduction, were observed in MoFTI-treated cells. MoFTI was observed to induce TNF-α, IFN-γ, IL-6, IL-10, and NO release. Conclusion: These results contribute to the ongoing evaluation of the antitumor potential of MoFTI and its effects on other immunological targets.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 855
Author(s):  
Ekaterina A. Litvinova ◽  
Victoria D. Bets ◽  
Natalya A. Feofanova ◽  
Olga V. Gvozdeva ◽  
Kseniya M. Achasova ◽  
...  

Intestinal mucus protects epithelial and immune cells from the gut resident microorganisms, and provides growth-promoting factors as mucus-derived O-glycans for beneficial bacteria. A lack of intestinal protective mucus results in changes in the commensal microflora composition, mucosal immune system reprogramming, and inflammation. Previous work has shown that fucose, the terminal glycan chain component of the intestinal glycoprotein Mucin2, and fucoidan polysaccharides have an anti-inflammatory effect in some mouse models of colitis. This study evaluates the effect of fucose on reproductive performance in heterozygous mutant Muc2 female mice. We found that even though Muc2+/− females are physiologically indistinguishable from C57Bl/6 mice, they have a significantly reduced reproductive performance upon dietary fucose supplementation. Metagenomic analysis reveals that the otherwise healthy wild-type siblings of Muc2−/− animals have reduced numbers of some of the intestinal commensal bacterial species, compared to C57BL/6 mice. We propose that the changes in beneficial microflora affect the immune status in Muc2+/− mice, which causes implantation impairment. In accordance with this hypothesis, we find that macrophage polarization during pregnancy is impaired in Muc2+/− females upon addition of fucose. Metabolic profiling of peritoneal macrophages from Muc2+/− females reveals their predisposition towards anaerobic glycolysis in favor of oxidative phosphorylation, compared to C57BL/6-derived cells. In vitro experiments on phagocytosis activity and mitochondrial respiration suggest that fucose affects oxidative phosphorylation in a genotype-specific manner, which might interfere with implantation depending on the initial status of macrophages. This hypothesis is further confirmed in BALB/c female mice, where fucose caused pregnancy loss and opposed implantation-associated M2 macrophage polarization. Taken together, these data suggest that intestinal microflora affects host immunity and pregnancy outcome. At the same time, dietary fucose might act as a differential regulator of macrophage polarization during implantation, depending on the immune status of the host.


2010 ◽  
Vol 207 (2) ◽  
pp. 213-223 ◽  
Author(s):  
Alison V Roland ◽  
Craig S Nunemaker ◽  
Susanna R Keller ◽  
Suzanne M Moenter

Polycystic ovary syndrome (PCOS) is a common fertility disorder with metabolic sequelae. Our laboratory previously characterized reproductive phenotypes in a prenatally androgenized (PNA) mouse model for PCOS. PNA mice exhibited elevated testosterone and LH levels, irregular estrous cycles, and neuroendocrine abnormalities suggesting increased central drive to the reproductive system. In this study, we examined metabolic characteristics of female PNA mice. PNA mice exhibited increased fasting glucose and impaired glucose tolerance (IGT) that were independent of age and were not associated with changes in body composition or peripheral insulin sensitivity. IGT was associated with defects in pancreatic islet function leading to an impaired response to high glucose, consistent with impaired insulin secretion. Exposure of isolated pancreatic islets to androgen in vitro demonstrated an impaired response to glucose stimulation similar to that in PNA mice, suggesting androgens may have activational in addition to organizational effects on pancreatic islet function. PNA mice also exhibited increased size of visceral adipocytes, suggesting androgen-programed differences in adipocyte differentiation and/or function. These studies demonstrate that in addition to causing reproductive axis abnormalities, in utero androgen exposure can induce long-term metabolic alterations in female mice.


2017 ◽  
Vol 72 (11-12) ◽  
pp. 459-465 ◽  
Author(s):  
Beatriz E. Boscán ◽  
Graciela L. Uzcanga ◽  
Maritza Calabokis ◽  
Rocío Camargo ◽  
Frank Aponte ◽  
...  

AbstractA polypeptide band with an apparent molecular weight of 55,000 was phosphorylated in vitro in whole-cell lysates ofTrypanosoma equiperdum. This band corresponds to tubulin as demonstrated by immunoprecipitation of the phosphorylated polypeptide fromT. equiperdumextracts when anti-α and anti-β tubulin monoclonal antibodies were employed. A parasite protein kinase CK2 was in charge of modifying tubulin given that common mammalian CK2 inhibitors such as emodin and GTP, hindered the phosphorylation of tubulin and exogenously added casein. Interestingly, a divalent cation-dependent translocation of theT. equiperdumtubulin and the CK2 responsible for its phosphorylation was noticed, suggesting a direct interaction between these two proteins. Additionally, this fraction of tubulin and its kinase coeluted using separations based on parameters as different as charge (DEAE-Sepharose anion-exchange chromatography) and size (Sephacryl S-300 gel filtration chromatography). Analyses by non-denaturing polyacrylamide gel electrophoresis and immunoblot of the purified and radioactively labeled fraction containing both tubulin and the CK2 enzyme, established the phosphorylation of a single band that was recognized by anti-CK2 α-subunit and anti-tubulin antibodies. All these findings revealed a physical association between a pool of tubulin and a CK2 inT. equiperdum.


Endocrinology ◽  
2020 ◽  
Vol 161 (12) ◽  
Author(s):  
Lourdes A Esparza ◽  
Tomohiro Terasaka ◽  
Mark A Lawson ◽  
Alexander S Kauffman

Abstract Androgens can affect the reproductive axis of both sexes. In healthy women, as in men, elevated exogenous androgens decrease gonad function and lower gonadotropin levels; such circumstances occur with anabolic steroid abuse or in transgender men (genetic XX individuals) taking androgen supplements. The neuroendocrine mechanisms by which endogenous or exogenous androgens regulate gonadotropin release, including aspects of pulsatile luteinizing hormone (LH) secretion, remain unknown. Because animal models are valuable for interrogating neural and pituitary mechanisms, we studied effects of androgens in the normal male physiological range on in vivo LH secretion parameters in female mice and in vitro LH secretion patterns from isolated female pituitaries. We also assessed androgen effects on hypothalamic and gonadotrope gene expression in female mice, which may contribute to altered LH secretion profiles. We used a nonaromatizable androgen, dihydrotestosterone (DHT), to isolate effects occurring specifically via androgen receptor (AR) signaling. Compared with control females, DHT-treated females exhibited markedly reduced in vivo LH pulsatility, with decreases in pulse frequency, amplitude, peak, and basal LH levels. Correlating with reduced LH pulsatility, DHT-treated females also exhibited suppressed arcuate nucleus Kiss1 and Tac2 expression. Separate from these neural effects, we determined in vitro that the female pituitary is directly inhibited by AR signaling, resulting in lower basal LH levels and reduced LH secretory responses to gonadotropin-releasing hormone pulses, along with lower gonadotropin gene expression. Thus, in normal adult females, male levels of androgen acting via AR can strongly inhibit the reproductive axis at both the neural and pituitary levels.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Aihua Wang ◽  
Jing Luo ◽  
William Moore ◽  
Hana Alkhalidy ◽  
Ling Wu ◽  
...  
Keyword(s):  

2008 ◽  
Vol 309A (5) ◽  
pp. 269-277
Author(s):  
Małgorzata Lenartowicz ◽  
Barbara Brzęk ◽  
Zbigniew Polański ◽  
Aleksandra Sierpniowska ◽  
Jerzy Galas ◽  
...  

Endocrinology ◽  
2015 ◽  
Vol 156 (11) ◽  
pp. 4365-4373 ◽  
Author(s):  
Christiane Otto ◽  
Anna Särnefält ◽  
Anne Ljungars ◽  
Siegmund Wolf ◽  
Beate Rohde-Schulz ◽  
...  

The prolactin receptor (PRLR) has been implicated in a variety of physiological processes (lactation, reproduction) and diseases (breast cancer, autoimmune diseases). Prolactin synthesis in the pituitary and extrapituitary sites is regulated by different promoters. Dopamine receptor agonists such as bromocriptine can only interfere with pituitary prolactin synthesis and thus do not induce a complete blockade of PRLR signaling. Here we describe the identification of a human monoclonal antibody 005-C04 that blocks PRLR-mediated signaling at nanomolar concentrations in vitro. In contrast to a negative control antibody, the neutralizing PRLR antibody 005-C04 inhibits signal transducer and activator of transcription 5 phosphorylation in T47D cells and proliferation of BaF3 cells stably expressing murine or human PRLRs in a dose-dependent manner. In vivo application of this new function-blocking PRLR antibody reflects the phenotype of PRLR-deficient mice. After antibody administration female mice become infertile in a reversible manner. In lactating dams, the antibody induces mammary gland involution and negatively interferes with lactation capacity as evidenced by reduced milk protein expression in mammary glands and impaired litter weight gain. Antibody-mediated blockade of the PRLR in vivo stimulates hair regrowth in female mice. Compared with peptide-derived PRLR antagonists, the PRLR antibody 005-C04 exhibits several advantages such as higher potency, noncompetitive inhibition of PRLR signaling, and a longer half-life, which allows its use as a tool compound also in long-term in vivo studies. Therefore, we suggest that this antibody will help to further our understanding of the role of auto- and paracrine PRLR signaling in health and disease.


1969 ◽  
Vol 15 (3) ◽  
pp. 247-252 ◽  
Author(s):  
W. W. Yotis ◽  
J. M. Cummings

The widespread use of oral contraceptive drugs stimulated an assessment of one such compound for any effects on staphylococci. In vitro turbidimetric studies indicated that norethynodrel in therapeutic doses had a bacteriostatic action on the growth of staphylococci. When adult female mice received 2.5 μg norethynodrel and 1.2 μg mestranol intraperitoneally on each of 3 days before intravenous challenge with virulent staphylococci, the spleens and kidneys of the norethynodrel–mestranol (Enovid) treated mice contained one-half to one-third lower viable staphylococcal counts than those obtained from the same organs of the control mice. Furthermore, during the first several days after infection the Enovid-treated mice showed reduced mortality rates in comparison to those observed in the control mice. Thus, Enovid may affect the development of staphylococcal infections or chemical reactions governing the growth of staphylococci.


Sign in / Sign up

Export Citation Format

Share Document