scholarly journals Antibody Responses of Japanese Horses to Influenza Viruses in the Past Few Years.

1993 ◽  
Vol 55 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Hitoshi GOTO ◽  
Yasuhiro YAMAMOTO ◽  
Chikako OHTA ◽  
Toshikazu SHIRAHATA ◽  
Tohru HIGUCHI ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kosuke Miyauchi ◽  
Yu Adachi ◽  
Keisuke Tonouchi ◽  
Taiki Yajima ◽  
Yasuyo Harada ◽  
...  

AbstractInfluenza viruses are a major public health problem. Vaccines are the best available countermeasure to induce effective immunity against infection with seasonal influenza viruses; however, the breadth of antibody responses in infection versus vaccination is quite different. Here, we show that nasal infection controls two sequential processes to induce neutralizing IgG antibodies recognizing the hemagglutinin (HA) of heterotypic strains. The first is viral replication in the lung, which facilitates exposure of shared epitopes that are otherwise hidden from the immune system. The second process is the germinal center (GC) response, in particular, IL-4 derived from follicular helper T cells has an essential role in the expansion of rare GC-B cells recognizing the shared epitopes. Therefore, the combination of exposure of the shared epitopes and efficient proliferation of GC-B cells is critical for generating broadly-protective antibodies. These observations provide insight into mechanisms promoting broad protection from virus infection.


2016 ◽  
Vol 283 (1845) ◽  
pp. 20162159 ◽  
Author(s):  
Sarah C. Hill ◽  
Ruth J. Manvell ◽  
Bodo Schulenburg ◽  
Wendy Shell ◽  
Paul S. Wikramaratna ◽  
...  

For viruses such as avian influenza, immunity within a host population can drive the emergence of new strains by selecting for viruses with novel antigens that avoid immune recognition. The accumulation of acquired immunity with age is hypothesized to affect how influenza viruses emerge and spread in species of different lifespans. Despite its importance for understanding the behaviour of avian influenza viruses, little is known about age-related accumulation of immunity in the virus's primary reservoir, wild birds. To address this, we studied the age structure of immune responses to avian influenza virus in a wild swan population ( Cygnus olor ), before and after the population experienced an outbreak of highly pathogenic H5N1 avian influenza in 2008. We performed haemagglutination inhibition assays on sampled sera for five avian influenza strains and show that breadth of response accumulates with age. The observed age-related distribution of antibody responses to avian influenza strains may explain the age-dependent mortality observed during the highly pathogenic H5N1 outbreak. Age structures and species lifespan are probably important determinants of viral epidemiology and virulence in birds.


2010 ◽  
Vol 84 (15) ◽  
pp. 7695-7702 ◽  
Author(s):  
Grace L. Chen ◽  
Elaine W. Lamirande ◽  
Chin-Fen Yang ◽  
Hong Jin ◽  
George Kemble ◽  
...  

ABSTRACT H2 influenza viruses have not circulated in humans since 1968, and therefore a large segment of the population would likely be susceptible to infection should H2 influenza viruses reemerge. The development of an H2 pandemic influenza virus vaccine candidate should therefore be considered a priority in pandemic influenza preparedness planning. We selected a group of geographically and temporally diverse wild-type H2 influenza viruses and evaluated the kinetics of replication and compared the ability of these viruses to induce a broadly cross-reactive antibody response in mice and ferrets. In both mice and ferrets, A/Japan/305/1957 (H2N2), A/mallard/NY/1978 (H2N2), and A/swine/MO/2006 (H2N3) elicited the broadest cross-reactive antibody responses against heterologous H2 influenza viruses as measured by hemagglutination inhibition and microneutralization assays. These data suggested that these three viruses may be suitable candidates for development as live attenuated H2 pandemic influenza virus vaccines.


2000 ◽  
Vol 6 (S2) ◽  
pp. 642-643
Author(s):  
CD Humphrey

“Emergence” of infectious disease agents in humans, domestic animals and wildlife during the past 20 years has been widely described. Perception of emergence derives largely from the application of improved identification methods, including refinements in molecular, serologic, and microscopy technologies that enable researchers to monitor species migration with greater sensitivity. The reality of emergence comes from shifts in genetic profiles and from influences of ecological changes often brought about by human interventions designed for economic or quality-of-life gains, and ecologic management. CDC has frequent involvement with many outbreaks caused by various infectious disease agents, some of which may be considered emerging. Notable unusual agents include filoviruses (Fig. 1) and hantaviruses (Fig. 2). More typically encountered agents include caliciviruses (Fig. 3) and influenza viruses (Fig. 4). Recently, threats of national and international bioterrorism have added to CDC's responsibilities for prompt identification of infectious agents.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 566
Author(s):  
Philip Serwer

Rapid obtaining of safe, effective, anti-viral vaccines has recently risen to the top of the international agenda. To maximize the success probability of future anti-viral vaccines, the anti-viral vaccines successful in the past are summarized here by virus type and vaccine type. The primary focus is on viruses with both single-stranded RNA genomes and a membrane envelope, given the pandemic past of influenza viruses and coronaviruses. The following conclusion is reached, assuming that success of future strategies is positively correlated with strategies successful in the past. The primary strategy, especially for emerging pandemic viruses, should be development of vaccine antigens that are live-attenuated viruses; the secondary strategy should be development of vaccine antigens that are inactivated virus particles. Support for this conclusion comes from the complexity of immune systems. These conclusions imply the need for a revision in current strategic planning.


1998 ◽  
Vol 72 (4) ◽  
pp. 3472-3474 ◽  
Author(s):  
James M. Binley ◽  
Xia Jin ◽  
Yaoxing Huang ◽  
Linqi Zhang ◽  
Yunzhen Cao ◽  
...  

ABSTRACT Long-term nonprogressor AD-18 has been infected with human immunodeficiency virus type 1 (HIV-1) for at least 16 years. During the past 5 years, he has had undetectable levels of plasma viremia, and HIV-1 cannot be isolated from him. Sequencing of proviral DNA indicates that the only HIV-1 sequences that can be identified in AD-18 have gross defects in the p17-encoding regions of the gag gene (Y. Huang, L. Zhang, and D. D. Ho, Virology 240:36–49, 1998). However, AD-18 has strong, sustained antibody responses to several HIV-1 antigens, including p17. Cytotoxic T-lymphocyte responses to Env and Gag antigens have gradually diminished over the past 4 years, at a time when the titers of antibodies to the same proteins have remained stable. We discuss what these observations might mean for the generation and maintenance of immunological memory.


2023 ◽  
Vol 83 ◽  
Author(s):  
A. Khan ◽  
M. H. Mushtaq ◽  
J. Muhammad ◽  
B. Ahmed ◽  
E. A. Khan ◽  
...  

Abstract There are different opinions around the World regarding the zoonotic capability of H3N8 equine influenza viruses. In this report, we have tried to summarize the findings of different research and review articles from Chinese, English, and Mongolian Scientific Literature reporting the evidence for equine influenza virus infections in human beings. Different search engines i.e. CNKI, PubMed, ProQuest, Chongqing Database, Mongol Med, and Web of Knowledge yielded 926 articles, of which 32 articles met the inclusion criteria for this review. Analyzing the epidemiological and Phylogenetic data from these articles, we found a considerable experimental and observational evidence of H3N8 equine influenza viruses infecting human being in different parts of the World in the past. Recently published articles from Pakistan and China have highlighted the emerging threat and capability of equine influenza viruses for an epidemic in human beings in future. In this review article we have summarized the salient scientific reports published on the epidemiology of equine influenza viruses and their zoonotic aspect. Additionally, several recent developments in the start of 21st century, including the transmission and establishment of equine influenza viruses in different animal species i.e. camels and dogs, and presumed encephalopathy associated to influenza viruses in horses, have documented the unpredictable nature of equine influenza viruses. In sum up, several reports has highlighted the unpredictable nature of H3N8 EIVs highlighting the need of continuous surveillance for H3N8 in equines and humans in contact with them for novel and threatening mutations.


2020 ◽  
Vol 54 (5) ◽  
pp. 364-369 ◽  
Author(s):  
Ettore Beghi ◽  
Valery Feigin ◽  
Valeria Caso ◽  
Paola Santalucia ◽  
Giancarlo Logroscino

The present outbreak caused by SARS-CoV-2, an influenza virus with neurotropic potential, presents with neurological manifestations in a large proportion of the affected individuals. Disorders of the central and peripheral nervous system are all present, while stroke, ataxia, seizures, and depressed level of consciousness are more common in severely affected patients. People with these severe complications are most likely elderly with medical comorbidities, especially hypertension and other vascular risk factors. However, postinfectious complications are also expected. Neurological disorders as sequelae of influenza viruses have been repeatedly documented in the past and include symptoms, signs, and diseases occurring during the acute phase and, not rarely, during follow-up. Postinfectious neurological complications are the result of the activation of immune mechanisms and can explain the insurgence of immune-mediated diseases, including the Guillain-Barré syndrome and other diseases of the central and peripheral nervous system that in the past occurred as complications of viral infections and occasionally with vaccines. For these reasons, the present outbreak calls for the introduction of surveillance systems to monitor changes in the frequency of several immune-mediated neurological diseases. These changes will determine a reorganization of the measures apt to describe the interaction between the virus, the environment, and the host in areas of different dimensions, from local communities to regions with several millions of inhabitants. The public health system, mainly primary care, needs to be strengthened to ensure that research and development efforts are directed toward right needs and directions. To cope with the present pandemic, better collaboration is required between international organizations along with more research funding, and tools in order to detect, treat, and prevent future epidemics.


2009 ◽  
Vol 83 (17) ◽  
pp. 8428-8438 ◽  
Author(s):  
Pinghu Zhang ◽  
Yinghua Tang ◽  
Xiaowen Liu ◽  
Wenbo Liu ◽  
Xiaorong Zhang ◽  
...  

ABSTRACT Many novel reassortant influenza viruses of the H9N2 genotype have emerged in aquatic birds in southern China since their initial isolation in this region in 1994. However, the genesis and evolution of H9N2 viruses in poultry in eastern China have not been investigated systematically. In the current study, H9N2 influenza viruses isolated from poultry in eastern China during the past 10 years were characterized genetically and antigenically. Phylogenetic analysis revealed that these H9N2 viruses have undergone extensive reassortment to generate multiple novel genotypes, including four genotypes (J, F, K, and L) that have never been recognized before. The major H9N2 influenza viruses represented by A/Chicken/Beijing/1/1994 (Ck/BJ/1/94)-like viruses circulating in poultry in eastern China before 1998 have been gradually replaced by A/Chicken/Shanghai/F/1998 (Ck/SH/F/98)-like viruses, which have a genotype different from that of viruses isolated in southern China. The similarity of the internal genes of these H9N2 viruses to those of the H5N1 influenza viruses isolated from 2001 onwards suggests that the Ck/SH/F/98-like virus may have been the donor of internal genes of human and poultry H5N1 influenza viruses circulating in Eurasia. Experimental studies showed that some of these H9N2 viruses could be efficiently transmitted by the respiratory tract in chicken flocks. Our study provides new insight into the genesis and evolution of H9N2 influenza viruses and supports the notion that some of these viruses may have been the donors of internal genes found in H5N1 viruses.


Sign in / Sign up

Export Citation Format

Share Document