scholarly journals Selected Engineering Properties and Drying Behavior of Tendu Fruit

Author(s):  
Zeba Jamil ◽  
Ashish M. Mohite ◽  
Neha Sharma

In this study, the selected engineering properties of tendu fruit (ripe and unripe) and drying of behavior of tendu fruit slices in different dryers at two temperature levels were investigated. The drying was conducted at 50°C and 60 °C for the slices of 1cm, 2cm, and 3 cm in tray dryer, vacuum dryer, and freeze dryer, respectively. The moisture ratio using modified page equation was used to study the drying behavior. The engineering properties such as bulk density, true density, Carr’s compressibility index, surface area, unit volume, angle of repose, and the coefficient of static friction were studied for tendu fruits , results showed a slight variation in values of ripe and unripe fruit. The porosity and Carr’s compressibility index for ripe and unripe tendu fruits were found (26.12% and 24.89 %) and (6.64 and 7.67), respectively. Whereas the proximate analysis did not found major differences in the ash, crude fat, crude fiber, and protein content values. The drying ratio for vacuum drying was found better results when compared to tray drying for all thickness of fruit slices. The tendu fruit slices of 1cm thickness at 60°C found better result in vacuum drying compared to tray drying and the best fit for modeling on the basis of X2, R2 and RSME also proved it. Freeze drying as a continuous drying process found the best quality of dried slices for all thicknesses with the final product moisture content between 7-10% (wet basis, wb).

Author(s):  
Tega A Emurigho ◽  
Canice O.O Kabuo ◽  
Arinze N Ifegbo

The physical and engineering properties of fresh and dried tiger nut (Cyperus esculentus) were determined at moisture content of 41.20% and 16.40% on wet basis respectively. The mean values for the three principal axes (length, width and thickness) were 9.52mm, 8.16mm, and 8.16mm for fresh tiger nut and 9.14mm, 7.72mm and 8.03mm for dried tiger nut respectively, showing a decrease with decrease in moisture content and was significantly different at p?0.05. The mean values of the bulk density, true density and porosity of both fresh and dried tiger nut were 0.59g/cm3 , 0.97g/cm3 , 40.61 and 0.58g/cm3, 0.94g/cm3 , 40.35 respectively and were not significantly different at p?0.05. The mean angle of repose and coefficient of static friction over formica, stainless steel, glass and plywood surfaces of fresh tiger nut were 50.11o , 2.73, 2.45, 2.22 and 1.77 while that of dried tiger nut were 48.23o , 2.41, 2.03, 2.11 and 2.00 respectively. The mean rupture force increased with compression force of 90.08N on the major axis to 116.88N for fresh tiger nut and from 120.55N to 161.10N for dried tiger nut and were significantly different at p?0.05. These properties determined are necessary in the design and fabrication of hoppers, conveyor equipment and the force tiger nut can withstand before it is ruptured.


Author(s):  
Seyed Mohammad Taghi Gharibzahedi ◽  
Seyed Mohammad Mousavi ◽  
Mohammad Jouki ◽  
Mohammad Ghahderijani

Abstract The study experimentally scrutinized nutritional and engineering properties of Iranian black seed at a moisture content of 5.1% (w.b.) in order to design processing equipment and machinery for various post-harvest operations. Analysis of chemical composition, mineral content and fatty acid profile illustrated that the seeds had high nutritional value. Bulk density, true density and porosity were 539.3 kg/m3, 1009.4 kg/m3 and 46.5%, respectively. Mean values for angle of repose and terminal velocity were 5.6 m/s and 32.5°, respectively. Static friction coefficient on plywood, mild steel, aluminum and galvanized iron sheet were 0.53, 0.36, 0.32 and 0.37, respectively. Specific heat, thermal conductivity and thermal diffusivity varied from 1642 to 2035 J/kgK, 0.17 to 0.22 W/mK and 9.3 to 10.4 × 10-8 m2/s, respectively. The force required for initiating seed rupture decreased from 57.36 to 35.1 N and 55.7 to 30.24 N, and the energy absorbed at seed rupture decreased from 51.24 to 21.31 mJ and 26.67 to 6.31 mJ, with increase in loading rate from 1 to 10mm/min, for vertical and horizontal orientations, respectively.


2010 ◽  
Vol 56 (No. 3) ◽  
pp. 99-106 ◽  
Author(s):  
S.M.T. Gharibzahedi ◽  
V. Etemad ◽  
J. Mirarab-Razi ◽  
M. Fos hat

Moisture-dependent engineering properties of pine nut were studied at 6.3, 8.2, 10.8, 14.5, 18.9, and 20.1% moisture content (dry basis). The length, width, thickness, and geometric mean diameter increased significantly (P < 0.05) from 21.75 to 21.85 mm, 7.39 to 7.47 mm, 6.07 to 6.14 mm, and 9.89 to 9.98 mm, respectively, with an increase in moisture content from 6.3% to 20.1%, whereas the increase in sphericity from 45.49% to 45.69% was not significant. Similarly, thousand seed mass, true density, porosity, terminal velocity, and angle of repose increased (P < 0.05) from 0.85 to 0.93 kg, 1043.3 to 1071 kg/m3, 41.31% to 44.57%, 8.67 to 8.83 m/s, and 35.4° to 39°, respectively, with an increase in moisture content under the experimental condition. Moreover, the bulk density decreased significantly (P < 0.05) from 612.3 to 593.6 kg/m3. Coefficient of static friction increased (P < 0.05) from 0.251 to 0.292, 0.241 to 0.271, 0.227 to 0.262, and 0.218 to 0.247 on plywood, galvanized iron sheet, stainless steel, and glass surfaces, respectively, with an increase in moisture content from 6.3% to 20.1%.


2015 ◽  
Vol 47 (4) ◽  
pp. 23-40
Author(s):  
F. Shahbazi

Abstract Several physical properties of three safflower cultivars (IL-111, LRV51-51 and Zarghan279) at moisture contents of 10, 15, 20 and 25% were determined and compared. All the linear dimensions, geometric mean diameter and sphericity of safflower seeds increase linearly with increase in seed moisture content. The values of geometric properties were higher for IL-111cultivar than the LRV51-51 and Zarghan279 cultivars. The values of the bulk densities decreased, whereas the thousand seeds mass, true density and porosity were increased with increase in seed moisture content. All the gravimetric properties for the three cultivars of safflower were significantly different (p<0.05). The values of the terminal velocity for all cultivars were significantly increased as the moisture content increased. The terminal velocity for the three cultivars of safflower were significantly different (p<0.05). On the two different surfaces, the coefficient of static friction of the IL-111 cultivar was significantly greater than that of the other cultivars. The static coefficient of friction was higher on plywood and lower for galvanized steel. The values of the angle of repose increased with increase of the moisture content. The values of the angle of repose for Zarghan279 cultivar were higher than the IL-111, LRV51-51 cultivars.


Author(s):  
Bhabani Shankar Dash ◽  
Sangram Keshari Swain ◽  
Debaraj Behera ◽  
Kalpana Rayaguru ◽  
Megha Meshram

Background: Green gram is a popular pulse crop in India (with 2.02 MT production over a cultivated area of 4.26 Mha) and Odisha (20.8 lakh ha area with a yield of 10.60 lakh tonnes). The information on the engineering properties and its behavioural changes with moisture content is vital for handling and designing of different agricultural processing equipment. Methods: This work mainly focused on studying green gram variety’s (Sujata) engineering properties at five different moisture levels (within a moisture range of 10.58 to 45.45% (d.b.). Standard methods and procedures were followed in the study and the output results were compared with previous research work to justify the variation or anomaly in some cases. The curve estimation method (regression analysis) was followed to find the best-fit curve and equation for the parameters studied. Result: The geometric mean diameter (GMD) of grain increased from 3.75 to 4.12 mm within the moisture content (MC) range and the variation was statistically significant (p less than 0.05). Sphericity and surface area varied significantly from 0.83 to 0.82 and 44.13 to 53.45 mm2, respectively, within the range of moisture contents studied with a high correlation among the data. Mass of thousand grains augmented (44.13 to 53.45 g) with a rise in MC and the data followed logarithmic and inverse curves. Bulk and true densities of green gram declined significantly from 860 to 670 kg m-3 and 1330 to 1240 kg m-3 with an increase in the moisture content. The porosity of green gram increased significantly from 35.75% to 46.38% and the terminal velocity raised from 9.20 m s-1 to 11.10 m s-1 with an increase in MC. The dynamic angle of repose increased significantly from 30.95 to 46.57o with MC. A significant variation in the coefficient of internal friction (0.78 to 0.90) was observed for the grains. The coefficient of static friction of grain increased significantly for different surfaces (MS, SS, Plywood and GI) with a rise in MC. The MS surface produced the highest coefficient of static friction and SS had the least. The results confirmed significant effect of MC on all engineering properties of green gram.


2003 ◽  
Vol 9 (6) ◽  
pp. 435-442 ◽  
Author(s):  
E. M. Santalla ◽  
R. H. Mascheroni

High oleic sunflower seeds evaluated at 5.6% moisture content (dry basis) showed a surface area of approximately 102.41 mm2 with an average length, width, thickness and unit mass of 11.526, 5.008 and 2.809 mm and 0.055 g, respectively. Corresponding values for the kernel were 8.802, 3.897 and 1.907 mm and 0.036 g. The mean equivalent diameter and sphericity of the seeds were 5.49 mm and 0.46, respectively, while corresponding values for the kernels were 4.01 mm and 0.44. True density increased, within a moisture range of 4-26% d.b., between 652 and 708 kg/m3 for the seed, between 1015 and 1057 kg/m3 for the kernel and between 636 and 760 kg/m3 for the hull. The bulk density decreased from 386 to 373 kg/m3 for seeds and from 260 to 220 kg/m3 for hulls and increased from 535 to 553 kg/m3 for the kernels. Porosity increased from 41.2 to 47.1% in seeds, from 47.2 to 47.7% in kernels and from 59.2 to 70.1% in hull. Terminal velocity of seeds increased with moisture content between 2.8 and 5.5 m/s for seed, between 1.8 and 3.8 m/s for kernel and between 1.1 and 1.9 m/s for hull. Drag coefficient decreased when moisture content increased and varied between 4.7 and 1.4 in seed and between 12.5 and 3.1 in kernel. Angle of repose increased with moisture content between 25 and 46 in seeds, between 35 and 55 in kernels and between 49 and 66 in hull on different surfaces and resulted higher for hull and kernel than for seed. The coefficient of static friction was higher for kernel than that for seed and hull and also was higher on wood (with grain perpendicular to the direction of the motion) and lower on acrylic and galvanised iron. This coefficient increased with moisture content from 0.23 to 0.50 for seed, from 0.37 to 0.69 for kernel and from 0.31 to 0.60 for hull. All engineering properties evaluated showed a linear dependence with moisture content, leading to simple and accurate formulae, adequate to predict their variation in the range of moisture considered.


Author(s):  
Ganesh kumar Gudas ◽  
Manasa B ◽  
Senthil Kumaran K ◽  
Rajesham V V ◽  
Kiran Kumar S ◽  
...  

Promethazine.HCl is a potent anti-emetic. The central antimuscarinic actions of antihistamines are probably responsible for their anti-emetic effects. Promethazine is also believed to inhibit the medullary chemoreceptor trigger zone, and antagonize apomorphine -induced vomiting. Fast dissolving tablets of Promethazine.HCl were prepared using five superdisintegrants viz; sodium starch glycolate, crospovidone, croscarmellose, L-HPC and pregelatinised starch. The precompression blend was tested for angle of repose, bulk density, tapped density, compressibility index and Hausner’s ratio. The tablets were evaluated for weight variation, hardness, friability, disintegration time (1 min), dissolution rate, content uniformity, and were found to be within standard limit. It was concluded that the fast dissolving tablets with proper hardness, rapidly disintegrating with enhanced dissolution can be made using selected superdisintegrants. Among the different formulations of Promethazine.HCl was prepared and studied and the formulation S2 containing crospovidone, mannitol and microcrystalline cellulose combination was found to be the fast dissolving formulation. In the present study an attempt has been made to prepare fast dissolving tablets of Promethazine.HCl, by using different superdisintegrants with enhanced disintegration and dissolution rate. 


2018 ◽  
Vol 61 (3) ◽  
pp. 1165-1174 ◽  
Author(s):  
Manjot Singh ◽  
Akinbode Adedeji ◽  
Dipak Santra

Abstract. Evaluation of the postharvest properties of nine proso millet cultivars was carried out to determine their physical and engineering properties, which are very useful for designing appropriate systems for process operations such as sorting, drying, heating, cooling, and milling. Nine cultivars of proso millet comprising waxy and non-waxy types, namely Cope, Earlybird, Huntsman, Minco, Plateau, Sunrise, Rise, Dawn, and Panhandle, were obtained from the Panhandle Research and Extension Center, University of Nebraska, Scottsbluff. Results showed significant (p &lt; 0.05) differences in their physical properties, such as sphericity, volume, bulk density, porosity, and angle of repose, which ranged from 0.86 to 0.91, from 3.94 to 5.14 mm3, from 765.49 to 809.67 kg m-3, from 42.49% to 44.20%, and from 22.98° to 25.74°, respectively. The cultivars were also evaluated for their pasting and gelatinization properties, and high correlation was found between amylose content and onset temperature (r = -0.94), peak gelatinization temperature (r = -0.92), peak viscosity (r = 0.84), final viscosity (r = 0.91), and setback viscosity (r = 0.90). The understanding of these basic physical and functional properties of proso millet cultivars will form the foundation for processing them into value-added products. Keywords: Chemical properties, Pasting properties, Proso millet.


Author(s):  
Ahmed Abdulameer Albadry ◽  
Wedad K. Ali ◽  
Fouad A. Al-saady

<p><strong>Objective: </strong>The objective of this study was to formulate once daily sustained oral release floating tablet of prochlorperazine maleate, this floating tablet has many advantages like reduction in dosing frequency, increase bioavailability, enhance patient compliance, and improve drug solubility.</p><p><strong>Methods: </strong>The prochlorperazine maleate floating tablets were formulated by using hydrophilic swellable polymer and gas generating agent. In this study, 15 formulas were prepared with many variables in order to achieve an optimum dissolution and floating behaviour for the floating tablet. The all prepared formulas were tested for bulk density, tap density, angle of repose, Carr's Index, thickness, weight variation, hardness, friability, drug content, <em>in vitro</em> dissolution test, <em>in vitro </em>buoyancy, and swelling index.</p><p class="Default"><strong>Results: </strong>Formula (F2) that contain 55% (w/w) <a href="https://www.google.iq/url?sa=t&amp;rct=j&amp;q=&amp;esrc=s&amp;source=web&amp;cd=3&amp;ved=0ahUKEwjh383ow9LPAhWF6RQKHRChCVgQFggpMAI&amp;url=https%3A%2F%2Fwww.ulprospector.com%2Fen%2Fna%2FFood%2FDetail%2F895%2F563462%2FBenecel-Hydroxypropylmethylcellulose-HPMC-K4M&amp;usg=AFQjCNGgfyJECkumK5cpU_6luVwwJ2fKxA&amp;bvm=bv.135258522,d.d24">hydroxypropyl methylcellulose</a> k4M (HPMCK4M), 5 % (w/w) sodium bicarbonate (NaHCO<sub>3</sub>) have acceptable flow properties and compressibility index and good physical properties with floating lag time (16±0.57) seconds and total floating time (32±0.29) h with 100% release of prochlorperazine maleate at the end of 24 h. Fourier transform infrared spectroscopy (FTIR) study of optimum formula (F2) showed no chemical interaction between the drug and the excipients that used in the formula.<strong></strong></p><p><strong>Conclusion: </strong>It can be concluded that that the selected formula (F2) can be a promising formula for the preparation of gastro retentive floating drug delivery systems of prochlorperazine maleate.</p>


2020 ◽  
Vol 8 (3) ◽  
pp. 232-238
Author(s):  
Dawn C.P. Ambrose

Multiplier onion (Allium cepa L. var aggregatum. Don.) is mainly used for its unique flavour in seasoning dishes. The unpeeled onions are processed at farm level by means of primary processing and by secondary processing various products like paste, flakes, powder could be produced from peeled onions. For the design of processing and handling equipment knowledge of engineering properties is essential. The engineering properties of peeled and unpeeled multiplier onion were determined. The average values of the physical properties of unpeeled onion were recorded for bulk density and true density as 636.621 and 1526.825 kg/m3 respectively. Similarly for peeled onions, the bulk and true density were 627.03 and 1108.74 kg/m3 respectively. The moisture present in peeled and unpeeled onion was 77.66 % and 74.43% (w.b) respectively. The TSS of multiplier onion was found to be 20° Brix for both peeled and unpeeled samples. The colour values were also measured using colour flex meter for the peeled and unpeeled onions. The frictional properties including coefficient of friction, filling and emptying angle of repose were also measured. Mechanical properties were determined by using a texture analyser. The firmness was measured in terms of penetrating force and crushing strength which were recorded to be 8.59 N and 124.93 N respectively for peeled and 12.00 N and 138.35 N respectively for unpeeled onions.


Sign in / Sign up

Export Citation Format

Share Document