607 Identification of the parameters of gear eccentricity from transmission error curve without measurement of gear eccentricity

2005 ◽  
Vol 2005.58 (0) ◽  
pp. 215-216
Author(s):  
Syuhei KUROKAWA ◽  
Yasutsune ARIURA ◽  
Akio KAWAMOTO
2011 ◽  
Vol 86 ◽  
pp. 428-433
Author(s):  
Ping Jiang ◽  
Guang Lei Liu ◽  
Rui Ting Zhang ◽  
Chong Qing Wang

In order to precisely control the meshing performance of spiral bevel gear pair, this paper represents a quantitative evaluation method using transmission error curve and tooth face contact trace. The design, using local synthesis method, obtains the manufacturing parameters of gear pair and forms the tooth face of spiral bevel gear. This paper accomplishes the quantitative evaluation by the following methods: using tooth contact analysis (TCA) to obtain actual transmission error curve and tooth face contact trace; quantitatively evaluating the transmission error curve by comparing the web values of actual and preset theoretical transmission error curves; quantitatively evaluating the tooth face contact trace by comparing the requirements (such as in shape, size and position) defined for spiral bevel gear tooth face contact trace and the corresponding parameters of an externally-connected rectangle, which surrounds the tooth face contact trace and is used to describe tooth face contact trace. This paper conducts a meshing performance analysis and quantitative evaluation of an aero spiral bevel gear pair. The result shows that, the actual and preset theoretical transmission error curves are basically in coincidence and the tooth face contact trace meets the requirements. This quantitative evaluation method lays a foundation for analyzing the relationship between transmission error curve and tooth face contact trace and for analyzing the installation error sensitivity.


2017 ◽  
Vol 870 ◽  
pp. 185-190
Author(s):  
Tetsuo Inoue ◽  
Syuhei Kurokawa

This report discusses how a transmission error curve is derived by a coordinate measuring machine, and the result by a coordinate measuring machine is compared with the result by a transmission error measuring machine. A vibration based on a gear pair engagement in fishing reel occurs when a handle of the reel rotates. When this vibration is large, an angler feels uncomfortable. In author’s previous reports, it is known that a rotational feeling depends on the transmission error curve. The result indicates that the rotational feeling can be improved if the accuracy of a tooth flank is improved. In order to reduce the transmission error, the error should be measured in high accuracy. In this research, a measurement method for evaluating the rotational feeling was reported using a face gear pair via a coordinate measuring machine and a transmission error measuring machine. As a result, it was confirmed that the result of measurement by the coordinate measuring machine agrees very well with the result of measurement by the transmission error measuring machine.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Shunxing Wu ◽  
Hong-Zhi Yan ◽  
Rengui Bi ◽  
Zhiyong Wang ◽  
Pengfei Zhu

In this study, synchronous cutting of concave and convex surfaces for hypoid gear was achieved using a duplex helical method. Precise, nonlinear optimization of the transmission error driven by machine tool parameters was performed to reduce the vibration noise of the gear pair. First, the transmission error curve and contact path of the tooth surface of the initial pinion were solved using tooth contact analysis. Second, according to the preset parabolic transmission error curve, the initial gear was used to generate the target pinion, which coincided with the contact path of the initial pinion. Finally, a deviation correction model of the discrete points, corresponding to the contact paths on the concave and convex surfaces of the target and initial pinions, was established. This model was solved using the Levenberg–Marquard algorithm with the trust region strategy, to obtain optimized machine tool parameters. Synchronous optimization of the transmission errors of concave and convex surfaces of the pinion was achieved by correcting the deviations of the contact points. The effectiveness of the proposed method was verified by a numerical example and by performing a contact area rolling test.


Author(s):  
Syuhei Kurokawa ◽  
Yasutsune Ariura ◽  
Yoji Matsukawa ◽  
Toshiro Doi

2021 ◽  
Vol 42 (9) ◽  
Author(s):  
Nils von Preetzmann ◽  
Reiner Kleinrahm ◽  
Philipp Eckmann ◽  
Giuseppe Cavuoto ◽  
Markus Richter

AbstractDensities of an air-like binary mixture (0.2094 oxygen + 0.7906 nitrogen, mole fractions) were measured along six isotherms over the temperature range from 100 K to 298.15 K at pressures up to 8.0 MPa, using a low-temperature single-sinker magnetic suspension densimeter. The measurements were carried out at T = (100, 115, and 130) K in the homogeneous gas and liquid region, and at T = (145, 220, and 298.15) K in the supercritical region (critical temperature TC = 132.35 K); in total, we present results for 52 (T, p) state points. The relative expanded combined uncertainty (k = 2) of the experimental densities was estimated to be between 0.03 % and 0.13 %, except for four values near the critical point. The largest error is caused by the magnetic suspension coupling in combination with the mixture component oxygen, which is strongly paramagnetic; the resulting force transmission error is up to 1.1 %. However, this error can be corrected with a proven correction model to an uncertainty contribution in density of less than 0.044 %. Due to a supercritical liquefaction procedure and the integration of a special VLE-cell, it was possible to measure densities in the homogeneous liquid phase without changing the composition of the liquefied mixture. Moreover, saturated liquid and saturated vapor densities were determined at T = (100, 115, and 130) K by extrapolation of the experimental single-phase densities to the saturation pressure. The new experimental results were compared with the mixture model of Lemmon et al. for the system (nitrogen + argon + oxygen) and the GERG-2008 equation of state.


2010 ◽  
Vol 97-101 ◽  
pp. 2764-2769
Author(s):  
Si Yu Chen ◽  
Jin Yuan Tang ◽  
C.W. Luo

The effects of tooth modification on the nonlinear dynamic behaviors are studied in this paper. Firstly, the static transmission error under load combined with misalignment error and modification are deduced. These effects can be introduced directly in the meshing stiffness and static transmission error models. Then the effect of two different type of tooth modification combined with misalignment error on the dynamic responses are investigated by using numerical simulation method. The numerical results show that the misalignment error has a significant effect on the static transmission error. The tooth crowning modification is generally preferred for absorbing the misalignment error by comparing with the tip and root relief. The tip and root relief can not resolve the vibration problem induced by misalignment error but the crowning modification can reduce the vibration significantly.


2021 ◽  
Vol 166 ◽  
pp. 104476
Author(s):  
Chanho Choi ◽  
Hyoungjong Ahn ◽  
Young-jun Park ◽  
Geun-ho Lee ◽  
Su-chul Kim

Sign in / Sign up

Export Citation Format

Share Document