2310 High Yield Batch Fabrication of Micro Spiral Beam for Multi-input Multi-output Optical Switch

Author(s):  
Seid H. SADAT ◽  
Daiki KAMIYA ◽  
Mikio HORIE
Author(s):  
Kwangseok Hwang ◽  
Kyeongtae Kim ◽  
Jaehoon Chung ◽  
Ohmyoung Kwon ◽  
Byeonghee Lee ◽  
...  

To guarantee the reproducibility, uniformity and high yield of the fabrication results even with the unavoidable disturbances during the process, the robustness of the batch fabrication process of SThM probes has been improved. First, the shape of the hard mask used for the anisotropic tip etching was redesigned to fit to certain crystal surfaces of silicon wafer so that the sharpness of the tip is kept for a while even after the hard mask falls apart during the bulk tip etch process. Second, the aspect ratio of the tip was maximized by utilizing high concentration KOH solution. Third, the uniformity of etch rate across the wafer was improved by using ultrasonic bath during the anisotropic wet tip etching step. Through the synergistic effects of the modifications of the key steps, the tip fabrication process has become very robust and uniform. Taking advantage of the robustness of the process, we reduced the tip radius of the SThM probe down to 50 nm and the diameter of the thermocouple junction located at the end of the tip to 100 nm. As a result, the sensitivity and the spatial resolution of the new probe were demonstrated to be improved more than two times.


2011 ◽  
Vol 2011 (1) ◽  
pp. 000627-000634
Author(s):  
D. DeRoo ◽  
K. Shcheglov ◽  
M. Inbar ◽  
D. Smukowski ◽  
P. Zappella ◽  
...  

Sensors in Motion Inc. is developing a navigation grade 6 DOF MEMS INS using its proprietary and patented technologies. The military is investing in INS and IMU technology which can answer its needs as well as provide the baseline for hundreds of other DOD and commercial applications which need a C-swap sensitive utility. SIM’s technology for MEMS gyros was conceived to address past problems associated with MEMS gyroscopes while leveraging the C-swap benefits of high volume, high yield batch fabrication, automated packaging, self-calibration, and thermal compensation. A key requirement for the MEMS Gyroscope is controlled vacuum-levels to obtain high Q devices. Gyro die are packaged using a multilayer package and getter system, which provides and maintains sealed vacuum cavities. Die are assembled into the LCC package using conventional assembly techniques and the package cavity is sealed using an SST 3150 high-vacuum sealing system. The SST system is used to activate a thin-film getter layer on the package lid before reflow of the solder seal. Resulting pressure levels have been determined by characterizing packaged but unlidded sensor die in a vacuum chamber. The package material, process flow and test results are summarized and reviewed. Tooling, process parameters, and test techniques are explained.


Author(s):  
N. Tempel ◽  
M. C. Ledbetter

Carbon films have been a support of choice for high resolution electron microscopy since the introduction of vacuum evaporation of carbon. The desirable qualities of carbon films and methods of producing them has been extensively reviewed. It is difficult to get a high yield of grids by many of these methods, especially if virtually all of the windows must be covered with a tightly bonded, quality film of predictable thickness. We report here a method for producing carbon foils designed to maximize these attributes: 1) coverage of virtually all grid windows, 2) freedom from holes, wrinkles or folds, 3) good adhesion between film and grid, 4) uniformity of film and low noise structure, 5) predictability of film thickness, and 6) reproducibility.Our method utilizes vacuum evaporation of carbon from a fiber onto celloidin film and grid bars, adhesion of the film complex to the grid by carbon-carbon contact, and removal of the celloidin by acetone dissolution. Materials must be of high purity, and cleanliness must be rigorously maintained.


Author(s):  
Hong-Ming Lin ◽  
C. H. Liu ◽  
R. F. Lee

Polyetheretherketone (PEEK) is a crystallizable thermoplastic used as composite matrix materials in application which requires high yield stress, high toughness, long term high temperature service, and resistance to solvent and radiation. There have been several reports on the crystallization behavior of neat PEEK and of CF/PEEK composite. Other reports discussed the effects of crystallization on the mechanical properties of PEEK and CF/PEEK composites. However, these reports were all concerned with the crystallization or melting processes at or close to atmospheric pressure. Thus, the effects of high pressure on the crystallization of CF/PEEK will be examined in this study.The continuous carbon fiber reinforced PEEK (CF/PEEK) laminate composite with 68 wt.% of fibers was obtained from Imperial Chemical Industry (ICI). For the high pressure experiments, HIP was used to keep these samples under 1000, 1500 or 2000 atm. Then the samples were slowly cooled from 420 °C to 60 °C in the cooling rate about 1 - 2 degree per minute to induce high pressure crystallization. After the high pressure treatment, the samples were scanned in regular DSC to study the crystallinity and the melting temperature. Following the regular polishing, etching, and gold coating of the sample surface, the scanning electron microscope (SEM) was used to image the microstructure of the crystals. Also the samples about 25mmx5mmx3mm were prepared for the 3-point bending tests.


Author(s):  
Xin-Ming Xu ◽  
Ming Xie ◽  
Jiazhu Li ◽  
Mei-Xiang Wang

An exquisite Pybox/Cu(OTf)2-catalyzed asymmetric tandem reaction of tertiary enamides was developed, which enabled the expeditious synthesis of indolizino[8,7-b]indole derivatives in high yield, excellent enantioselectivity and diastereoselectivity.


1983 ◽  
Vol 49 (01) ◽  
pp. 024-027 ◽  
Author(s):  
David Vetterlein ◽  
Gary J Calton

SummaryThe preparation of a monoclonal antibody (MAB) against high molecular weight (HMW) urokinase light chain (20,000 Mr) is described. This MAB was immobilized and the resulting immunosorbent was used to isolate urokinase starting with an impure commercial preparation, fresh urine, spent tissue culture media, or E. coli broth without preliminary dialysis or concentration steps. Monospecific antibodies appear to provide a rapid single step method of purifying urokinase, in high yield, from a variety of biological fluids.


EDIS ◽  
2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Barry L. Tillman

FloRunTM ‘331’ peanut variety was developed by the University of Florida, Institute of Food and Agricultural Sciences, North Florida Research and Education Center near Marianna, Florida.  It was released in 2016 because it combines high yield potential with excellent disease tolerance. FloRunTM ‘331’ has a typical runner growth habit with a semi-prominent central stem and medium green foliage.  It has medium runner seed size with high oleic oil chemistry.


Sign in / Sign up

Export Citation Format

Share Document