S111032 Surface Contact Stress and Root Stress Analyses of Three-Dimensional, Thin-rimmed Spur Gears with Inclined Web under Torque and Centrifugal Load Conditions

2011 ◽  
Vol 2011 (0) ◽  
pp. _S111032-1-_S111032-4
Author(s):  
Shuting LI
2021 ◽  
Vol 158 ◽  
pp. 104219
Author(s):  
Zhifang Zhao ◽  
Hongzheng Han ◽  
Pengfei Wang ◽  
Hui Ma ◽  
Shunhao Zhang ◽  
...  

Author(s):  
Angeli Jayme ◽  
Imad L. Al-Qadi

A thermomechanical coupling between a hyper-viscoelastic tire and a representative pavement layer was conducted to assess the effect of various temperature profiles on the mechanical behavior of a rolling truck tire. The two deformable bodies, namely the tire and pavement layer, were subjected to steady-state-uniform and non-uniform temperature profiles to identify the significance of considering temperature as a variable in contact-stress prediction. A myriad of ambient, internal air, and pavement-surface conditions were simulated, along with combinations of applied tire load, tire-inflation pressure, and traveling speed. Analogous to winter, the low temperature profiles induced a smaller tire-pavement contact area that resulted in stress localization. On the other hand, under high temperature conditions during the summer, higher tire deformation resulted in lower contact-stress magnitudes owing to an increase in the tire-pavement contact area. In both conditions, vertical and longitudinal contact stresses are impacted, while transverse contact stresses are relatively less affected. This behavior, however, may change under a non-free-rolling condition, such as braking, accelerating, and cornering. By incorporating temperature into the tire-pavement interaction model, changes in the magnitude and distribution of the three-dimensional contact stresses were manifested. This would have a direct implication on the rolling resistance and near-surface behavior of flexible pavements.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4284
Author(s):  
Lvtao Zhu ◽  
Mahfuz Bin Rahman ◽  
Zhenxing Wang

Three-dimensional integrated woven spacer sandwich composites have been widely used as industrial textiles for many applications due to their superior physical and mechanical properties. In this research, 3D integrated woven spacer sandwich composites of five different specifications were produced, and the mechanical properties and performance were investigated under different load conditions. XR-CT (X-ray computed tomography) images were employed to visualize the microstructural details and analyze the fracture morphologies of fractured specimens under different load conditions. In addition, the effects of warp and weft direction, face sheet thickness, and core pile height on the mechanical properties and performance of the composite materials were analyzed. This investigation can provide significant guidance to help determine the structure of composite materials and design new products according to the required mechanical properties.


Author(s):  
J. Groenendijk ◽  
C. H. Vogelzang ◽  
A. A. A. Molenaar ◽  
B. R. Mante ◽  
L. J. M. Dohmen

The relative strain effects of 15 different load configurations were studied. Using the linear tracking device (LINTRACK) accelerated loading facility, two 5-year-old pavements of 0.15-m asphalt on sand (one virgin and one loaded with 4 million 75-kN wheel loads) were tested. All measured strains were converted to strain factors relative to a standard load (super-single tire, 50 kN, 0.70 MPa). The results were compared with earlier measurements and BISAR-calculated factors. The results on the loaded pavement showed markedly more variation than those on the unloaded pavement. Generally, the BISAR-calculated relative strain factors matched the measured values well for the super-single tire. Considerable difference occurred only in the most extreme load conditions. Nonuniform contact stress distribution can be the cause for this. The calculated relative strain factors for the dual tire configurations underestimated the measured values.


1994 ◽  
Vol 05 (02) ◽  
pp. 215-217
Author(s):  
T.Y. Fan ◽  
H.G. Hahn ◽  
A. Voigt

In this study a three-dimensional transient dynamic contact problem is solved, and a theorem relating the contact stress and displacement over an elliptic region is proved. Numerical results for the contact displacement-time variation clearly demonstrate the effect of inertia induced by the dynamic stress.


2018 ◽  
Vol 85 (10) ◽  
Author(s):  
Heng Yang ◽  
Xue-Feng Yao ◽  
Shen Wang ◽  
Yu-Chao Ke ◽  
Sheng-Hao Huang ◽  
...  

In this paper, the theoretical analysis and the inversion of the contact stress on the finite thickness rubber contact surface with the friction effect are investigated. First, an explicit expression of deformation and stress on the surface of rubber under a rigid spherical indenter is developed by means of theoretical model, dimensional analysis, and nonlinear finite element simulation. Second, the inverse approach for obtaining the contact stress on the finite thickness rubber contact surface is presented and verified theoretically. Also, the displacement, the stress field, and the friction coefficient are obtained by means of three-dimensional digital image correlation (3D DIC) method. Finally, the applicability to other hyperelastic models, general boundary conditions, and loading modes are discussed. The results will provide an important theoretical and experimental basis for evaluating the contact stress on the finite thickness rubber layer.


1976 ◽  
Vol 98 (4) ◽  
pp. 277-282 ◽  
Author(s):  
J. C. Thompson ◽  
Y. Sze ◽  
D. G. Strevel ◽  
J. C. Jofriet

In most bolted connections, the unknown interface pressure distribution and the extent of the contact region are essential parameters in any stress analysis. Concerning these parameters, experimental and numerical studies of a model of an isolated single-bolt region show the following. The contact region between the flanges depends almost exclusively on the ratio of the flange thickness to the diameter of the surface region of each flange over which the bolt prestressing force is distributed; the contact zone is virtually independent of both the level of prestressing force and of the size of the bolt hole; and the contact stress distribution for a typical range of parameters is very closely approximated by a truncated conical distribution. The studies also delineate the regions of the flanges around each bolt where the stress state is strongly three-dimensional and regions where simple plate theory is applicable. The relationships established between the contact stress distribution and the various geometric parameters are presented in a form immediately applicable by designers.


Sign in / Sign up

Export Citation Format

Share Document