3B14 Selection of design variables through the sensitivity analysis of a detection algorithm of the loss of balance

2010 ◽  
Vol 2010 (0) ◽  
pp. _3B14-1_-_3B14-8_
Author(s):  
B. K. Ko ◽  
K. H. Kim ◽  
K. Son
1987 ◽  
Vol 109 (3) ◽  
pp. 385-391 ◽  
Author(s):  
K. K. Choi ◽  
J. L. T. Santos ◽  
M. C. Frederick

A numerical method is presented to implement structural design sensitivity analysis theory, using the versatility and convenience of existing finite element structural analysis programs. Design variables such as thickness and cross-sectional areas of components of individual members and built-up structures are considered. Structural performance functionals considered include displacement and stress. The method is also applicable for eigenvalue problem design sensitivity analysis. It is shown that calculations can be carried out outside existing finite element codes, using postprocessing data only. Thus design sensitivity analysis software does not have to be imbedded in an existing finite element code. Feasibility of the method is shown through analysis of several problems, including a built-up structure. Accurate design sensitivity results are obtained without the uncertainty of numerical accuracy associated with selection of finite difference perturbations.


2021 ◽  
Vol 55 (6) ◽  
pp. 117-128
Author(s):  
Guan Guan ◽  
Shuai Zhou ◽  
Zhengmao Zhuang ◽  
Qu Yang

Abstract In the conventional process of parametric ship optimization, the selection of design variables mostly relies on design experience. The lack of a clear and quantitative method of parameter selection leads to a certain degree of blindness and inefficiency. In this article, a parametric hull modeling method is proposed. The sensitivity analysis based on orthogonal experimental design is performed to select the design variables of optimization. Through variance and range analysis, the parameters that have a significant influence on the optimization objective are selected as the design variables. A combination of Sobol and tangent search method is applied during the optimization. The shape optimization of a fishing boat with minimum resistance is taken as an example. The optimization result proves the efficiency of the proposed parametric modeling method and the sensitivity analysis, which are significant for the shape optimization of a fishing boat.


2019 ◽  
Vol 2 (5) ◽  
Author(s):  
Mengda Zhang ◽  
Chenjing Zhou ◽  
Tian-tian Zhang ◽  
Yan Han

Selecting check index quantitatively is the core of the calibration of micro traffic simulation parameters at signal intersection. Five indexes in the node (intersection) module of VISSIM were selected as the check index set. Twelve simulation parameters in the core module were selected as the simulation parameters set. Optimal process of parameter calibration was proposed and model of the intersection of Huangcun west street and Xinghua street in Beijing was built in VISSIM to verify it. The sensitivity analysis between each check index and simulation parameter in their own set was conducted respectively. Sensitive parameter sets of different check indices were obtained and compared. The results show that different indexes have different size of set, and average vehicle delay's is maximum, so it's necessary to select index quantitatively. The results can provide references for scientific selection of the check indexes and improve the study efficiency of parameter calibration.


2021 ◽  
pp. 0887302X2199594
Author(s):  
Ahyoung Han ◽  
Jihoon Kim ◽  
Jaehong Ahn

Fashion color trends are an essential marketing element that directly affect brand sales. Organizations such as Pantone have global authority over professional color standards by annually forecasting color palettes. However, the question remains whether fashion designers apply these colors in fashion shows that guide seasonal fashion trends. This study analyzed image data from fashion collections through machine learning to obtain measurable results by web-scraping catwalk images, separating body and clothing elements via machine learning, defining a selection of color chips using k-means algorithms, and analyzing the similarity between the Pantone color palette (16 colors) and the analysis color chips. The gap between the Pantone trends and the colors used in fashion collections were quantitatively analyzed and found to be significant. This study indicates the potential of machine learning within the fashion industry to guide production and suggests further research expand on other design variables.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2084
Author(s):  
Raman Kumar ◽  
Rohit Dubey ◽  
Sehijpal Singh ◽  
Sunpreet Singh ◽  
Chander Prakash ◽  
...  

Total knee replacement (TKR) is a remarkable achievement in biomedical science that enhances human life. However, human beings still suffer from knee-joint-related problems such as aseptic loosening caused by excessive wear between articular surfaces, stress-shielding of the bone by prosthesis, and soft tissue development in the interface of bone and implant due to inappropriate selection of TKR material. The choice of most suitable materials for the femoral component of TKR is a critical decision; therefore, in this research paper, a hybrid multiple-criteria decision-making (MCDM) tactic is applied using the degree of membership (DoM) technique with a varied system, using the weighted sum method (WSM), the weighted product method (WPM), the weighted aggregated sum product assessment method (WASPAS), an evaluation based on distance from average solution (EDAS), and a technique for order of preference by similarity to ideal solution (TOPSIS). The weights of importance are assigned to different criteria by the equal weights method (EWM). Furthermore, sensitivity analysis is conducted to check the solidity of the projected tactic. The weights of importance are varied using the entropy weights technique (EWT) and the standard deviation method (SDM). The projected hybrid MCDM methodology is simple, reliable and valuable for a conflicting decision-making environment.


2011 ◽  
Vol 59 (2) ◽  
pp. 137-140 ◽  
Author(s):  
S. Szczepański ◽  
M. Wöjcikowski ◽  
B. Pankiewicz ◽  
M. KŁosowski ◽  
R. Żaglewski

FPGA and ASIC implementation of the algorithm for traffic monitoring in urban areas This paper describes the idea and the implementation of the image detection algorithm, that can be used in integrated sensor networks for environment and traffic monitoring in urban areas. The algorithm is dedicated to the extraction of moving vehicles from real-time camera images for the evaluation of traffic parameters, such as the number of vehicles, their direction of movement and their approximate speed. The authors, apart from the careful selection of particular steps of the algorithm towards hardware implementation, also proposed novel improvements, resulting in increasing the robustness and the efficiency. A single, stationary, monochrome camera is used, simple shadow and highlight elimination is performed. The occlusions are not taken into account, due to placing the camera at a location high above the road. The algorithm is designed and implemented in pipelined hardware, therefore high frame-rate efficiency has been achieved. The algorithm has been implemented and tested in FPGA and ASIC.


Author(s):  
Guang Dong ◽  
Zheng-Dong Ma ◽  
Gregory Hulbert ◽  
Noboru Kikuchi ◽  
Sudhakar Arepally ◽  
...  

Efficient and reliable sensitivity analyses are critical for topology optimization, especially for multibody dynamics systems, because of the large number of design variables and the complexities and expense in solving the state equations. This research addresses a general and efficient sensitivity analysis method for topology optimization with design objectives associated with time dependent dynamics responses of multibody dynamics systems that include nonlinear geometric effects associated with large translational and rotational motions. An iterative sensitivity analysis relation is proposed, based on typical finite difference methods for the differential algebraic equations (DAEs). These iterative equations can be simplified for specific cases to obtain more efficient sensitivity analysis methods. Since finite difference methods are general and widely used, the iterative sensitivity analysis is also applicable to various numerical solution approaches. The proposed sensitivity analysis method is demonstrated using a truss structure topology optimization problem with consideration of the dynamic response including large translational and rotational motions. The topology optimization problem of the general truss structure is formulated using the SIMP (Simply Isotropic Material with Penalization) assumption for the design variables associated with each truss member. It is shown that the proposed iterative steps sensitivity analysis method is both reliable and efficient.


Sign in / Sign up

Export Citation Format

Share Document