scholarly journals D142 Visualization of Exothermic Chemical Reactions in Microchannels using the Near-Infrared Two-Wavelength Imaging Method : Analysis of Neutralization Reaction of Acid and Base with Absorption Images

2014 ◽  
Vol 2014 (0) ◽  
pp. _D142-1_-_D142-2_
Author(s):  
Daisuke Kawashima ◽  
Naoto Kakuta ◽  
Katsuya Kondo ◽  
Hidenobu Arimoto ◽  
Yukio Yamada
2008 ◽  
Vol 39 (01) ◽  
Author(s):  
AJ Fallgatter ◽  
AC Ehlis ◽  
MM Richter ◽  
M Schecklmann ◽  
MM Plichta

2021 ◽  
Vol 127 (4) ◽  
Author(s):  
S. Skruszewicz ◽  
S. Fuchs ◽  
J. J. Abel ◽  
J. Nathanael ◽  
J. Reinhard ◽  
...  

AbstractWe present an overview of recent results on optical coherence tomography with the use of extreme ultraviolet and soft X-ray radiation (XCT). XCT is a cross-sectional imaging method that has emerged as a derivative of optical coherence tomography (OCT). In contrast to OCT, which typically uses near-infrared light, XCT utilizes broad bandwidth extreme ultraviolet (XUV) and soft X-ray (SXR) radiation (Fuchs et al in Sci Rep 6:20658, 2016). As in OCT, XCT’s axial resolution only scales with the coherence length of the light source. Thus, an axial resolution down to the nanometer range can be achieved. This is an improvement of up to three orders of magnitude in comparison to OCT. XCT measures the reflected spectrum in a common-path interferometric setup to retrieve the axial structure of nanometer-sized samples. The technique has been demonstrated with broad bandwidth XUV/SXR radiation from synchrotron facilities and recently with compact laboratory-based laser-driven sources. Axial resolutions down to 2.2 nm have been achieved experimentally. XCT has potential applications in three-dimensional imaging of silicon-based semiconductors, lithography masks, and layered structures like XUV mirrors and solar cells.


2019 ◽  
Vol 12 (06) ◽  
pp. 1950012 ◽  
Author(s):  
Hequn Zhang ◽  
Weisi Xie ◽  
Ming Chen ◽  
Liang Zhu ◽  
Zhe Feng ◽  
...  

Rodents are popular biological models for physiological and behavioral research in neuroscience and rats are better models than mice due to their higher genome similarity to human and more accessible surgical procedures. However, rat brain is larger than mice brain and it needs powerful imaging tools to implement better penetration against the scattering of the thicker brain tissue. Three-photon fluorescence microscopy (3PFM) combined with near-infrared (NIR) excitation has great potentials for brain circuits imaging because of its abilities of anti-scattering, deep-tissue imaging, and high signal-to-noise ratio (SNR). In this work, a type of AIE luminogen with red fluorescence was synthesized and encapsulated with Pluronic F-127 to make up form nanoparticles (NPs). Bright DCDPP-2TPA NPs were employed for in vivo three-photon fluorescent laser scanning microscopy of blood vessels in rats brain under 1550[Formula: see text]nm femtosecond laser excitation. A fine three-dimensional (3D) reconstruction up to the deepness of 600[Formula: see text][Formula: see text]m was achieved and the blood flow velocity of a selected vessel was measured in vivo as well. Our 3PFM deep brain imaging method simultaneously recorded the morphology and function of the brain blood vessels in vivo in the rat model. Using this angiography combined with the arsenal of rodent’s brain disease, models can accelerate the neuroscience research and clinical diagnosis of brain disease in the future.


2014 ◽  
Vol 111 (10) ◽  
pp. E933-E942 ◽  
Author(s):  
Bryan Q. Spring ◽  
Adnan O. Abu-Yousif ◽  
Akilan Palanisami ◽  
Imran Rizvi ◽  
Xiang Zheng ◽  
...  

Drug-resistant micrometastases that escape standard therapies often go undetected until the emergence of lethal recurrent disease. Here, we show that it is possible to treat microscopic tumors selectively using an activatable immunoconjugate. The immunoconjugate is composed of self-quenching, near-infrared chromophores loaded onto a cancer cell-targeting antibody. Chromophore phototoxicity and fluorescence are activated by lysosomal proteolysis, and light, after cancer cell internalization, enabling tumor-confined photocytotoxicity and resolution of individual micrometastases. This unique approach not only introduces a therapeutic strategy to help destroy residual drug-resistant cells but also provides a sensitive imaging method to monitor micrometastatic disease in common sites of recurrence. Using fluorescence microendoscopy to monitor immunoconjugate activation and micrometastatic disease, we demonstrate these concepts of “tumor-targeted, activatable photoimmunotherapy” in a mouse model of peritoneal carcinomatosis. By introducing targeted activation to enhance tumor selectively in complex anatomical sites, this study offers prospects for catching early recurrent micrometastases and for treating occult disease.


2018 ◽  
Vol 11 (4) ◽  
pp. e201700232 ◽  
Author(s):  
Jessica Miller ◽  
Steven T. Wang ◽  
Inema Orukari ◽  
Julie Prior ◽  
Gail Sudlow ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jianshe Yang

AbstractThis highlight presents a recent technique of “Light Vaccine” for COVID-19 pandemic control. Though this technique has the germicidal advantage to SARS-CoV-2, its shortcomings will limit the wide and in-depth application. We make a perspective of real nano light vaccine, which will play an important role in the prevention and control of COVID-19. Briefly, This flow chart described the MWCNT was fabricated with strong acid and base conditional mixture in order to achieve the p-WCNT (chemical process); then modified with RNA layse and receptor binding domain (RBD) by covalent conjugation and physical absorption to get f-WCNT (functionalization); thereafter, f-WCNT was used in the multi-cell culture system interacting with SARS-CoV-2 to identify the special affinity of f-WCNT to ACE2 labeled alveolar type II cells and the inhibition capacity to SARS-CoV-2. This design, is different from the so called “light vaccine”, has the real function to against SARS-CoV-2 by local cellular temperature-rising through photothermal conversion under the near infrared (NIR) light irradiation, according to the physical and chemical nature of carbon nanotubes, and initiates the immune response consequently.


Author(s):  
Humio Inaba ◽  
Kin Pui Chan ◽  
B. Devaraj ◽  
Makoto Yamada ◽  
Masashi Usa ◽  
...  

2005 ◽  
Vol 25 (2) ◽  
pp. 226-233 ◽  
Author(s):  
Dong-Eog Kim ◽  
Farouc A Jaffer ◽  
Ralph Weissleder ◽  
Ching-Hsuan Tung ◽  
Dawid Schellingerhout

An intravital microscopy imaging method was developed to visualize active cerebral thrombus and blood–brain barrier (BBB) disruption using Near Infrared Fluorescent (NIRF) probes. A circular craniotomy was made in CD-1 mice. Thrombi were formed by applying 10%-FeCl3 to the entire exposed superior sagittal sinus (SSS, 5 mm), or to the posterior 2.5 mm of the SSS for 5 mins. Control animals were pretreated with heparin (50 U/kg) before thrombus induction. Three hours after thrombus formation, a FXIIIa-targeted NIRF imaging probe (A15) was intravenously injected, and the SSS was imaged by intravital microscopy. This was followed by injection of indocyanine green (ICG) to assess BBB permeability. The A15 optical probe bound to thrombus, and the fluorescent signal emitted by the bound agent corresponded well with histologically confirmed thrombus. A15 initially remained intravascular, followed by excretion and subsequent decrease in all tissues except for thrombus, where it was retained. The subsequent ICG was also intravascular immediately after injection, but then began to leak into the cerebral parenchyma at 3 to 5 mins. The sites of leakage were adjacent to thrombosed areas. Heparin pretreatment prevented thrombus formation and reduced ICG leakage significantly. This demonstrates the feasibility of simultaneous in vivo monitoring of thrombus and BBB permeability in an animal model of cerebral venous thrombosis.


Sign in / Sign up

Export Citation Format

Share Document