scholarly journals Studies on Back-Flow Mechanism of Turbomachines : Part 1, Back-Flow Mechnism to the Suction Side of Axial-Flow Impeller Blades

1967 ◽  
Vol 33 (249) ◽  
pp. 770-778 ◽  
Author(s):  
Tomitaro TOYOKURA ◽  
Naokazu KUBOTA
2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Yanhui Wu ◽  
Qingpeng Li ◽  
Jiangtao Tian ◽  
Wuli Chu

To investigate the pre-stall behavior of an axial flow compressor rotor, which was experimentally observed with spike-type stall inception, systematic experimental and whole-passage simulations were laid out to analyze the internal flow fields in the test rotor. In this part, emphases were put on the analyses of the flow fields of whole-passage simulation, which finally diverged, and the objective was to uncover the flow mechanism of short length scale disturbance (or spike) emergence. The numerical result demonstrated that the test rotor was of spike-type stall initiation. The numerical probes, arranged ahead of the rotor to monitor the static pressure variation, showed that there first appear two pips on the curves. After one rotor revolution, there was only one pip left, spreading at about 33.3% rotor speed. This propagation speed was almost the same as that of the spike observed in experiments. The further analysis of the flow field revealed a concentrated blockage sector on the flow annuls ahead of rotor developed gradually with the self-adjustment of flow fields. The two pins on monitoring curves corresponded to two local blockage regions in near-tip passages, and were designated as B1 and B2, respectively. The correlation between the tip secondary vortices (TSVs) in the preceding and native passages was the flow mechanism for propagation of B2 and B1, thereby leading to their spread speed approximate to the active period of the TSV in one passage. Furthermore, the self-sustained unsteady cycle of TSVs was the underlying flow mechanism for the occurrence of the so-called “tip clearance spillage flow” and “tip clearance backflow.” Because B2 was the tip-front of the blockage sector, TSVs associated with its propagation became stronger and stronger, so that the “tip clearance backflow” induced by it was capable of spilling into the next passage below the blade tip. This phenomenon was regarded as the threshold event where B2 started to evolve into a spike. The distinctive flow feature during the development stage of the spike was the occurrence of a separation focus on the suction side in the affected passages, which changed the self-sustained unsteady cycle of the TSV substantially. A three-dimensional vortex originating from this focus led to a drastic increase in the strength of the TSV, which, in turn, led to a rapid increase in the “tip clearance backflow” induced by the TSV and the radial extent of spillage flow.


1969 ◽  
Vol 12 (50) ◽  
pp. 215-223 ◽  
Author(s):  
Tomitaro TOYOKURA ◽  
Naokazu KUBOTA ◽  
Shiro AKAIKE

Aerospace ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 12
Author(s):  
Marco Porro ◽  
Richard Jefferson-Loveday ◽  
Ernesto Benini

This work focuses its attention on possibilities to enhance the stability of an axial compressor using a casing treatment technique. Circumferential grooves machined into the case are considered and their performances evaluated using three-dimensional steady state computational simulations. The effects of rectangular and new T-shape grooves on NASA Rotor 37 performances are investigated, resolving in detail the flow field near the blade tip in order to understand the stall inception delay mechanism produced by the casing treatment. First, a validation of the computational model was carried out analysing a smooth wall case without grooves. The comparisons of the total pressure ratio, total temperature ratio and adiabatic efficiency profiles with experimental data highlighted the accuracy and validity of the model. Then, the results for a rectangular groove chosen as the baseline case demonstrated that the groove interacts with the tip leakage flow, weakening the vortex breakdown and reducing the separation at the blade suction side. These effects delay stall inception, improving compressor stability. New T-shape grooves were designed keeping the volume as a constant parameter and their performances were evaluated in terms of stall margin improvement and efficiency variation. All the configurations showed a common efficiency loss near the peak condition and some of them revealed a stall margin improvement with respect to the baseline. Due to their reduced depth, these new configurations are interesting because they enable the use of a thinner light-weight compressor case as is desirable in aerospace applications.


Author(s):  
Cengiz Camci ◽  
Debashis Dey ◽  
Levent Kavurmacioglu

This paper deals with an experimental investigation of aerodynamic characteristics of full and partial-length squealer rims in a turbine stage. Full and partial-length squealer rims are investigated separately on the pressure side and on the suction side in the “Axial Flow Turbine Research Facility” (AFTRF) of the Pennsylvania State University. The streamwise length of these “partial squealer tips” and their chordwise position are varied to find an optimal aerodynamic tip configuration. The optimal configuration in this cold turbine study is defined as the one that is minimizing the stage exit total pressure defect in the tip vortex dominated zone. A new “channel arrangement” diverting some of the leakage flow into the trailing edge zone is also studied. Current results indicate that the use of “partial squealer rims” in axial flow turbines can positively affect the local aerodynamic field by weakening the tip leakage vortex. Results also show that the suction side partial squealers are aerodynamically superior to the pressure side squealers and the channel arrangement. The suction side partial squealers are capable of reducing the stage exit total pressure defect associated with the tip leakage flow to a significant degree.


Author(s):  
Xingen Lu ◽  
Junqiang Zhu ◽  
Chaoqun Nie ◽  
Weiguang Huang

The phenomenon of flow instability in the compression system such as fan and compressor has been a long-standing “bottle-neck” problem for gas turbines/aircraft engines. With a vision of providing a state-of-the-art understanding of the flow field in axial-flow compressor in the perspective of enhancing their stability using passive means. Two topics are covered in this paper. The first topic is the stability-limiting flow mechanism close to stall, which is the basic knowledge needed to manipulate end-wall flow behavior for the stability improvement. The physical process occurring when approaching stall and the role of complex tip flow mechanism on flow instability in current high subsonic axial compressor rotor has been assessed using single blade passage computations. The second topic is flow instability manipulation with casing treatment. In order to advance the understanding of the fundamental mechanisms of casing treatment and determine the change in the flow field by which casing treatment improve compressor stability, systematic studies of the coupled flow through a subsonic compressor rotor and various end-wall treatments were carried out using a state-of-the-art multi-block flow solver. The numerically obtained flow fields were interrogated to identify complicated flow phenomenon around and within the end-wall treatments and describe the interaction between the rotor tip flow and end-wall treatments. Detailed analyses of the flow visualization at the rotor tip have exposed the different tip flow topologies between the cases with treatment casing and with untreated smooth wall. It was found that the primary stall margin enhancement afforded by end-wall treatments is a result of the tip flow manipulation. Compared to the smooth wall case, the treated casing significantly dampen or absorb the blockage near the upstream part of the blade passage caused by the upstream movement of tip clearance flow and weakens the roll-up of the core vortex. These mechanisms prevent an early spillage of low momentum fluid into the adjacent blade passage and delay the onset of flow instability.


Author(s):  
Xi Shen ◽  
Desheng Zhang ◽  
Bin Xu ◽  
Yongxin Jin ◽  
Xiongfa Gao

Abstract The Detached Eddy Simulation (DES) has been used to simulate the pressure fluctuation of the impeller in an axial flow pump. The results were combined with experiments including high-speed photography and transient pressure measurements to investigate the unstable flow induced by tip leakage vortex (TLV). Numerical results show that maximum predictive error values of head is 2.9%, compared with experimental results. The pressure fluctuation at different monitoring points present a certain regularity, with 3 peaks and 3 troughs in a period, corresponding to the number of blades. The amplitude of pressure fluctuation at P1 (impeller inlet) is the highest among those monitoring points, where the amplitude decreases with the flow rates. The dominant frequency of pressure fluctuation at impeller under cavitation condition is the blade passing frequency (BPF). Besides, there are also N* = 6, 9, 12 and other more harmonic frequencies. The cavitation flow was analyzed with the pressure fluctuation of the blade tip. For the existence of the pressure difference between pressure side and suction side, the pressure at monitoring points change alternately. The amplitude of the fluctuation near tip is affected seriously by the cavitation bubbles, as the cavitation could is a low pressure region with unstable fluctuation.


Author(s):  
M. Wehner ◽  
J. Bütikofer ◽  
C-W. Hustad ◽  
A. Bölcs

This paper presents a simple method for predicting tip leakage losses in transonic axial-flow turbines. The method is based upon experimental work conducted on a flat plate at 5° incidence and with isentropic exit Mach number of 1.26. The tip gap height was varied from zero up to 15% of chord. Measurements were made (using Laser-2-Focus) of velocity vectors around the tip gap region. These revealed a strong shear layer emerging from the gap onto the suction side of the plate. The relative angle between the leakage flow and the freestream was identified as a key parameter determining the subsequent mixing and overall loss generation. The proposed model applies two-dimensional potential flow analysis to estimate the flow angle as a function of tip gap height and the angle of incidence. Subsequently, comparisons were made with experimental results obtained in an annular cascade on the outer profile of the last-stage blade of a steam turbine. The predicted tip leakage losses compare favourably with the measured values.


Author(s):  
Jun Xiong ◽  
Yangli Zhu ◽  
Xing Wang ◽  
Haisheng Chen ◽  
Junfeng Wang

Flow field of shroud leakage flow for a single-stage axial turbine has been investigated in this article. The spiral groove seal (SGS) is adopted for shrouded rotor blade to reduce tip leakage and improve turbine aerodynamic performance. A series of three-dimensional (3D) computational fluid dynamics (CFD) simulations are performed to investigate leakage characteristics and flow mechanism of various configurations with different angle, depth, width, and grooves number of the SGS. The original staggered labyrinth seal (LS) is also calculated for comparison. The results illustrate that small spiral groove angle can create more axial flow resistance; meanwhile, it will increase grooves number existing in the axial direction. Groove depth and tooth width will influence the number, shape, and strength of vortex in the groove. The leakage mass flow can be reduced by 36% and isentropic efficiency of the turbine can be increased by 0.26% when spiral groove angle, depth, and width of the SGS are 1.5°, 1.8 mm, and 0.8 mm, respectively. Overall, the optimal SGS can influence vortex generation and enhance energy dissipation in shroud cavity to reduce the leakage and suppress mixing loss of leakage flow with the main flow to some extent. It can be attributed to the combination of throttling effect and pumping effect of the SGS that realize leakage reduction and efficiency improvement. As a result, the SGS can effectively improve tip leakage flow of shrouded blade in axial turbine.


Sign in / Sign up

Export Citation Format

Share Document