scholarly journals Research on pressure welding conditions of various work metals. Effects of contact pressure, surface expansion ratio and temperature.

1988 ◽  
Vol 54 (500) ◽  
pp. 991-997 ◽  
Author(s):  
Tamotsu NAKAMURA ◽  
Kazuyoshi KONDO ◽  
Hiroshi SASAHARA ◽  
Kazuya NAKAMURA
2018 ◽  
Vol 767 ◽  
pp. 248-255
Author(s):  
Kazuhito Asai ◽  
Kazuhiko Kitamura ◽  
Keisuke Goto ◽  
Nobukazu Hayashi

A backward can extrusion test provides severe tribological conditions because high pressure, high temperature, and large surface expansion ratio affect the lubricant. During the forward stroke these conditions intensify with increasing cup depth of the extruded workpiece; additionally, the back-stroke force during retraction of the punch rises to a significant level under a poor-lubricated condition. This study estimates the coefficient of friction μp between punch and workpiece during the back-stroke by combining experiments using conventional soap-phosphate coated steel and numerical analysis by FEM. The values of μp were estimated to be 0.09 and 0.03 in case of small and large workpiece depth, respectively. Friction decreased with elevating temperature.


Author(s):  
He Peng ◽  
Ning Xu ◽  
Zhansheng Liu

Tighten force has much influence on tie-bolt fastened rotor dynamics. Temperature distribution in tie-bolt fastened rotor results in thermal expansion of rotor and rods. The difference of thermal expansion between rotor and rods causes the variation of bolt load. With considering the thermal contact conductance, the thermal model of tie-bolt fastened rotor was established by finite element method and the axial temperature distribution was obtained. The influences of surface roughness, nominal contact pressure and axial position of contact on axial temperature distribution were analysed. Based on temperature distribution in the tie-bolt fastened rotor, the variation of tighten force was investigated. Results show that nominal contact pressure, surface roughness and axial contact arrange have different influences on the variation of tighten force with temperature.


DENKI-SEIKO ◽  
2005 ◽  
Vol 76 (2) ◽  
pp. 79-86
Author(s):  
Shigekazu Ito ◽  
Hiroaki Yoshida ◽  
Sachihiro Isogawa

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sayyad Zahid Qamar

Abstract Solid expandable tubular technology and swelling elastomer seals find extensive use in the repair of aging reservoirs. To improve productivity and cost-effectiveness, they have also become an integral part of new developments such as slim wells and completions with reduced or no cementing. This work reports the use of numerical simulation to investigate the joint use of expandable tubulars and swell packers in various petroleum drilling applications. Material properties of steel tubular and five different swelling elastomers are obtained through mechanical testing. Simulations are performed to study the sealing pressure at the elastomer-formation boundary. Different parameters are studied, such as elastomer material, expansion or compression ratio, seal length, seal thickness, tubular end condition, and formation type. Higher values of rubber elasticity, tubular expansion (expansion ratio), and elastomer compression result in higher seal contact pressure. Contact pressure is higher when the elastomer is pressing against wellbore formation as compared to steel outer casing (zero friction vs. friction), and when the formation is assumed to be rigid as compared to elastic or elastic-plastic. Results of this investigation can be used both for performance evaluation and design enhancement of coupled solid-expandable-tubular and swellable-packer applications.


2012 ◽  
Vol 504-506 ◽  
pp. 387-392 ◽  
Author(s):  
Yoshinori Yoshida ◽  
Takamasa Matsubara ◽  
Keisuke Yasui ◽  
Takashi Ishikawa ◽  
Tomoaki Suganuma

In this study, conditions of metallurgical bonding between steel and aluminum in cold forging process is investigated. Two-layered cylindrical cup of the materials is produced in cold backward extrusion in five processing velocity conditions. Small tensile test specimens are cut off at the bonding boundary in the product using a wire-cutting machine and the bonding strength on the boundary is measured in tensile test using the specimens. Fractured contact surfaces are observed with an electron microscope for investigation of bonding. Finite element analyses for the backward extrusion are conducted and surface expansion ratio and interface pressure on the boundary are calculated. The influence of process conditions, extrusion velocity and surface expansion ratio and boundary pressure, on the bonding are investigated.


1979 ◽  
Vol 101 (2) ◽  
pp. 121-127 ◽  
Author(s):  
N. Bay

Investigations of the bonding surface in scanning electron microscope after fracture confirm the mechanisms of bond formation in cold pressure welding to be: fracture of work-hardened surface layer, surface expansion increasing the area of virgin surface, extrusion of virgin material through cracks of the original surface layer, and establishment of real contact and bonding between virgin material. This implies that normal pressure as well as surface expansion are basic parameters governing the bond strength. Experimental investigations of pressure welding Al-Al under plane strain compression in a specially developed equipment allowing independent variation of normal pressure and surface expansion confirm this. Based upon a slip-line analysis of the extrusion through cracks of the surface layer and upon the establishment of real contact between virgin material, a theory for the bond strength as a function of surface expansion and normal pressure is developed. The theory is in good agreement with the experimental results.


Author(s):  
Shigekazu Ito ◽  
Hiroaki Yoshida ◽  
Sachihiro Isogawa ◽  
Yoshihisa Doi ◽  
Kuniaki Dohda

A lubricant plays a very important role in forging. It can reduce the forging load and make for smooth knockout. The tribo-simulator tests that have often been used as standard evaluation methods for metal forming lubricants includes the ring compression test and spike forging test. However, the forging of components such as flange bolt and constant velocity joint is more severe than a spike forging test or ring compression test. Thus, the development of an evaluation method for lubricants for use in more severe conditions is much awaited. We have developed a new evaluation tribometer using backward extrusion with a taper punch. The new device is called a “Taper Cup Tribometer.” The taper cup test can evaluate lubricity under large deformation conditions. In this test, the surface expansion ratio can be controlled by changing the punch stroke. The surface expansion ratio of the new taper cup tribometer is around 15 to 50, as calculated by fine element analysis. The results of lubricant evaluation in cold forging of carbon steel are as follows. Zinc phosphate has a lower forging load than other lubricants, making it clear that it is a superior lubricant. Oil, on the other hand, has a high forging load and poor lubrication characteristics. The taper cup Tribometer can evaluate the friction characteristics of lubricants. Furthermore, MoS2 shows a higher forging load than zinc phosphate in the region of higher surface area expansion ratio around 12. The forging load of oil is higher than zinc phosphate in the region of higher surface area expansion ratio around 4. In this way, the new taper cup tribometer can recognize the forging limit for the lubricant under the forging load.


2005 ◽  
Vol 127 (5) ◽  
pp. 813-818 ◽  
Author(s):  
Jason P. Halloran ◽  
Sarah K. Easley ◽  
Anthony J. Petrella ◽  
Paul J. Rullkoetter

Rigid body total knee replacement (TKR) models with tibiofemoral contact based on elastic foundation (EF) theory utilize simple contact pressure-surface overclosure relationships to estimate joint mechanics, and require significantly less computational time than corresponding deformable finite element (FE) methods. However, potential differences in predicted kinematics between these representations are currently not well understood, and it is unclear if the estimates of contact area and pressure are acceptable. Therefore, the objectives of the current study were to develop rigid EF and deformable FE models of tibiofemoral contact, and to compare predicted kinematics and contact mechanics from both representations during gait loading conditions with three different implant designs. Linear and nonlinear contact pressure-surface overclosure relationships based on polyethylene material properties were developed using EF theory. All other variables being equal, rigid body FE models accurately estimated kinematics predicted by fully deformable FE models and required only 2% of the analysis time. As expected, the linear EF contact model sufficiently approximated trends for peak contact pressures, but overestimated the deformable results by up to 30%. The nonlinear EF contact model more accurately reproduced trends and magnitudes of the deformable analysis, with maximum differences of approximately 15% at the peak pressures during the gait cycle. All contact area predictions agreed in trend and magnitude. Using rigid models, edge-loading conditions resulted in substantial overestimation of peak pressure. Optimal nonlinear EF contact relationships were developed for specific TKR designs for use in parametric or repetitive analyses where computational time is paramount. The explicit FE analysis method utilized here provides a unique approach in that both rigid and deformable analyses can be run from the same input file, thus enabling simple selection of the most appropriate representation for the analysis of interest.


Sign in / Sign up

Export Citation Format

Share Document