Influence of Processing Parameters on Bonding Conditions in Backward Extrusion Forged Bonding

2012 ◽  
Vol 504-506 ◽  
pp. 387-392 ◽  
Author(s):  
Yoshinori Yoshida ◽  
Takamasa Matsubara ◽  
Keisuke Yasui ◽  
Takashi Ishikawa ◽  
Tomoaki Suganuma

In this study, conditions of metallurgical bonding between steel and aluminum in cold forging process is investigated. Two-layered cylindrical cup of the materials is produced in cold backward extrusion in five processing velocity conditions. Small tensile test specimens are cut off at the bonding boundary in the product using a wire-cutting machine and the bonding strength on the boundary is measured in tensile test using the specimens. Fractured contact surfaces are observed with an electron microscope for investigation of bonding. Finite element analyses for the backward extrusion are conducted and surface expansion ratio and interface pressure on the boundary are calculated. The influence of process conditions, extrusion velocity and surface expansion ratio and boundary pressure, on the bonding are investigated.

2014 ◽  
Vol 966-967 ◽  
pp. 281-289 ◽  
Author(s):  
Zhi Gang Wang ◽  
Shinobu Komiyama ◽  
Yasuharu Yoshikawa

A new upsetting-extrusion type tribometer is developed to investigate the performance of a lubrication coating on the side surface of a billet in multi-stage cold forging. In this tribometer, the lubrication coating on the billet surface is first destroyed by the upsetting process and then evaluated by the extrusion process. The frictional shear factor of the lubrication coating is obtained by plotting the measured extrusion load and the position after the extrusion of a centerline drawn on the billet in advance on the calibration curve obtained by FEM. Experimental results using a zinc phosphate coating and a dry in-place type coating showed that the reduced peak height Rpk is more appropriate than the maximum height Rz to express the effect of the surface roughness of tool on galling generation. When no galling occurs, the frictional shear factor hardly varies with the type of the lubrication coating and the surface expansion ratio. The anti-galling ability of the dry in-place type coating is greatly improved by a two-stage shot blast before the lubrication coating and reaches a level better than the zinc phosphate coating.


2013 ◽  
Vol 699 ◽  
pp. 133-137 ◽  
Author(s):  
Byeong Woo Lee ◽  
Jin Heui Koo ◽  
Tae Suk Lee ◽  
Yun Hae Kim ◽  
Jae Suk Hwang

Zinc oxide (ZnO) powders were synthesized by a simple precipitation and a hydrothermal process at the temperature range RT-100°C. In precipitation process, the powders were formed by mixing aqueous solutions of zinc nitrate with NaOH aqueous solution under controlled process conditions such as precursor concentration, reaction pH and temperature. Single phase ZnO particles can be easily synthesized in lower precursor concentration, higher reaction pH and temperature. The powders synthesized at room temperature exhibited plates, rods or pointed multipod morphologies depending on the concentration and pH. ZnO crystallites synthesized by hydrothermal process consisted mostly of well developed large or elongated crystallites of plates or rods in shape. The results reveal that the ZnO crystallite sizes and shapes would be efficiently controllable by changing the processing parameters of the preparation processes.


2018 ◽  
Vol 777 ◽  
pp. 300-305
Author(s):  
Kasem Charoenrut ◽  
Chaiyasit Banjongprasert

Aluminum-Silicon Alloy, ADC12 is one of the most popular alloys for pressure die casting due to its high castability and high productivity. ADC12 is a hypoeutectic aluminum-silicon alloy that contains 10-12wt% of Si and has an occasional problem for a mechanical properties failure such as crack and shrinkage porosity. This study presents the investigation of the microstructure of ADC12 parts produced by pressured die casting with different process parameters and chemical compositions. The microstructure was observed using optical microscopy (OM) and scanning electron microscopy (SEM) with energy – dispersive X-ray (EDX) and electron backscatter diffraction (EBSD) to determine phases, grain, and crystallographic information in order to understand the microstructural evolution after die casting with different process conditions. Changes in casting pressure and a reduction of iron content contributed to enhanced mechanical properties and less shrinkage porosity. This was due to different processing parameters, mainly casting pressure. The average grain size of aluminum matrix was also reduced due to a higher pressure during casting with a moderately fast cooling rate.


2018 ◽  
Vol 767 ◽  
pp. 248-255
Author(s):  
Kazuhito Asai ◽  
Kazuhiko Kitamura ◽  
Keisuke Goto ◽  
Nobukazu Hayashi

A backward can extrusion test provides severe tribological conditions because high pressure, high temperature, and large surface expansion ratio affect the lubricant. During the forward stroke these conditions intensify with increasing cup depth of the extruded workpiece; additionally, the back-stroke force during retraction of the punch rises to a significant level under a poor-lubricated condition. This study estimates the coefficient of friction μp between punch and workpiece during the back-stroke by combining experiments using conventional soap-phosphate coated steel and numerical analysis by FEM. The values of μp were estimated to be 0.09 and 0.03 in case of small and large workpiece depth, respectively. Friction decreased with elevating temperature.


2008 ◽  
Vol 375-376 ◽  
pp. 338-342 ◽  
Author(s):  
Xia Ji ◽  
Jian Zhong Zhou ◽  
Hua Feng Guo ◽  
Da Peng Xu

This paper presents an experimental investigation on the metal components fabricated by laser cladding. In the present study, two process of laser cladding were conducted, that is pre-placed powder cladding and coaxial powder-feed cladding. The effect of processing parameters was studied and optimum set of parameters for the superior surface quality was established by employing the orthogonal design. The fabricated components were subjected to metallographic examinations and micro-hardness measurement. Results indicated that the microstructure of coaxial cladding components was finer than pre-placed powder cladding components. The micro-hardness of the fabricated specimen along and vertical the scanning direction were measured using a HVS-1000 micro-hardness tester with a 200 g applied load. Analysis of the physical properties provided further evidence of differences in micro-hardness produced by different process conditions, and the average micro-hardness value of pre-placed power cladding layer was lower than the coaxial powder-feed cladding layer.


2006 ◽  
Vol 519-521 ◽  
pp. 955-960 ◽  
Author(s):  
Dong Hwan Jang ◽  
J.H. Ok ◽  
G.M. Lee ◽  
Beong Bok Hwang

Numerical analysis of radial extrusion process combined with backward extrusion has been performed to investigate the forming characteristics of an aluminum alloy in a combined extrusion process. Various variables such as gap size, die corner radius and frictional conditions are adopted as design or process parameters for analysis in this paper. The main investigation is focused on the analysis of forming characteristics of AA 2024 aluminum alloy in terms of material flow into backward can and radial flange sections. Due to various die geometries and process conditions such as frictional conditions, the material flow into a can and flange shows different patterns during the combined extrusion process and its characteristics are well summarized quantitatively in this paper in terms of forming load, volume ratio etc. Extensive simulation work leads to quantitative relationships between process conditions and the forming characteristics such as volume ratio of flange to can and the size of can and flange in terms of the can height extruded backward. It is easily seen from the simulation results that the volume ratio, which is defined as the ratio of flange volume to can volume, increases as the gap size and/or die corner radius increase. However, it is interesting to note that the frictional condition has little influence on the forming load and the deformation patterns. Usually, the frictional condition is a greatest process variable in normal forging operation. It might be believed from the simulation results that the frictional conditions are not a major process parameter in case of combined extrusion processes. It is also found that the can size, which is defined as the height of billet after forming, turns out to be even smaller than that of initial billet under a certain condition of die geometry.


2011 ◽  
Vol 380 ◽  
pp. 148-151
Author(s):  
Pei Fang Cheng ◽  
Jian Qing Wang ◽  
Wen Ming Ren

This paper is concerned with the preparation of cellulose packaging films with high oxygen permeability. The films were prepared from cotton pulp and wood pulp by the cast-wiped method using N-methymorpholine-N-oxide (NMMO) as a solvent. The effects of processing parameters on the structure and performance of cellulose films were also studied. The results show that for optimum processing of the films cotton pulp was the preferred raw material, the optimum pulp concentration in the casting solution was 5%, and the optimum temperature for the coagulation bath was 40°C. Using the above process conditions resulted in packaging films with high oxygen permeability making them suitable for use in packaging fruits and vegetables.


2020 ◽  
Vol 837 ◽  
pp. 3-8
Author(s):  
Vadim Bespalov ◽  
Sergey Sidelnikov ◽  
Ruslan Sokolov ◽  
Alexander Chumak ◽  
Denis Voroshilov ◽  
...  

Computer simulation of the process of ingotless rolling-extruding (IRE) of aluminum alloy rods with a content of 0.15% zirconium in the Deform 3D software package performed. The temperature, speed and deformation parameters of the treatment of the investigated alloy determined under different process conditions. To check the adequacy of the models, rod samples were made on a CRE-200 laboratory unit at specified processing parameters. Using the Deform 3D software package, the forces acting on the rolls and the extruding die during the IRE determined and their comparison with tensometric experimental data presented. The mechanical properties, electrical resistivity of semi-finished products after processing by the method of ingotless rolling-extruding and for conditions of their heating to 230 °C investigated. Technological recommendations for the manufacture of deformed semi-finished products using the method of ingotless rolling-extruding are proposed.


2013 ◽  
Vol 561 ◽  
pp. 196-200
Author(s):  
Yu Guang Gong ◽  
Zhi Wen Zong ◽  
Ying Yu ◽  
Bai Yuan Lv

Coated crosstie products and counter mold components are created in 3-D model using Inventor software, preparing for CAE analysis. By using Moldflow software , to determine products gate location, filling, packing, cooling, push-out processing, as well as the injection process conditions optimization of simulation analysis to find possible defects, modify and optimize the design, determine the best processing parameters and conditions. Binding using Ansys11.0 software to analyze rail sleeper mold cavity deformation, structure stress, get distribution of property of von Mises stress and displacement vector sum, in the mold cavity on the contact surface. By changing the cavity wall thickness, and other factors to improve the force which it is subjected, providing references to structure optimization of injection mold design. It has been proven that in collaborative application of these three softwares, the design of the injection mold is a very efficient and easy.


Sign in / Sign up

Export Citation Format

Share Document