scholarly journals Semi-Active Seismic Isolation System with Controllable Viscous Dampers Using Magneto-Rheological Fluid

2006 ◽  
Vol 72 (717) ◽  
pp. 1428-1434 ◽  
Author(s):  
Eiji SATO ◽  
Takafumi FUJITA
2011 ◽  
Vol 374-377 ◽  
pp. 2543-2547
Author(s):  
Hai Qing Liu ◽  
Yao Feng Yan

The hybrid seismic isolation system , consisting of the SMA strands-laminate rubber bearing combined with magneto rheological damper ,was explored, for the sake of improving seismic isolation efect of the SMA strands-laminate rubber bearing under great earthquake ,especially when level shear deformation of SMA rubber bearing is bigger(D>0.55d) .So does its mechanical model. In this paper,we compare the SMA strands-laminate rubber bearing with the hybrid seismic isolation system. Simulation analysis results indicate that the hybrid seismic isolation system is able to achieve both low interstory drift and acceleration and,at the same lime,limit the base displacement.The security of isolated structure was improved largely.


2010 ◽  
Vol 10 (02) ◽  
pp. 287-298 ◽  
Author(s):  
J. S. HWANG ◽  
C. F. HUNG ◽  
Y. N. HUANG ◽  
S. J. WANG

In seismic isolation design of structures located at soft soil sites or near field areas, viscous dampers (VD) are often included as part of the isolation system to minimize its maximum displacement. Due to the 90° phase angle existing between the force and displacement of the VD, the maximum force transmitted by the isolation system cannot be calculated by simply combining the forces of the isolation bearings, such as lead-rubber bearings (LRB) or high damping rubber bearings (HDRB), and VD in association with the design displacement. Conforming to the code-specified equivalent lateral response procedure for isolation design, this paper presents a formula for determining the seismic design force of the combined LRB and VD isolation system, taking into account the phase angle between the combined force of the LRB and VD and the displacement of the isolation system. The numerical results have shown that the maximum responses of the isolation system predicted by the proposed formula are conservative and comparable with those from the inelastic dynamic response history analysis.


Author(s):  
Satoshi Fujita ◽  
Keisuke Minagawa ◽  
Mitsuru Miyazaki ◽  
Go Tanaka ◽  
Toshio Omi ◽  
...  

This paper describes three-dimensional isolation performance of seismic isolation system using air bearings. Long period seismic waves having predominant period of from a few seconds to a few ten seconds have recently been observed in various earthquakes. Also resonances of high-rise buildings and sloshing of petroleum tanks in consequence of long period seismic waves have been reported. Therefore the isolation systems having very long natural period or no natural period are required. In a previous paper [1], we proposed an isolation system having no natural period by using air bearings. Additionally we have already reported an introduction of the system, and have investigated horizontal motion during earthquake in the previous paper. It was confirmed by horizontal vibration experiment and simulation in the previous paper that the proposed system had good performance of isolation. However vertical motion should be investigated, because vertical motion varies horizontal frictional force. Therefore this paper describes investigation regarding vertical motion of the proposed system by experiment. At first, a vertical excitation test of the system is carried out so as to investigate vertical dynamic property. Then a three-dimensional vibration test using seismic waves is carried out so as to investigate performance of isolation against three-dimensional seismic waves.


2021 ◽  
Vol 11 (13) ◽  
pp. 6106
Author(s):  
Zhiying Zhang ◽  
Xin Tian ◽  
Xin Ge

The Bouc–Wen nonlinear hysteretic model has many control parameters, which has been widely used in the field of seismic isolation. The isolation layer is the most important part of the isolation system, which can be effectively simulated by the Bouc–Wen model, and the isolation system can reflect different dynamic characteristics under different control parameters. Therefore, this paper mainly studies and analyzes the nonlinear dynamic characteristics of the isolation system under different influence factors based on the incremental harmonic balance method, which can provide the basis for the dynamic design of the isolation system.


Author(s):  
Hoang Nam Phan ◽  
Fabrizio Paolacci ◽  
Silvia Alessandri ◽  
Phuong Hoa Hoang

Liquid steel storage tanks are strategic structures for industrial facilities and have been widely used both in nuclear and non-nuclear power plants. Typical damage to tanks occurred during past earthquakes such as cracking at the bottom plate, elastic or elastoplastic buckling of the tank wall, failure of the ground anchorage system, and sloshing damage around the roof, etc. Due to their potential and substantial economic losses as well as environmental hazards, implementations of seismic isolation and energy dissipation systems have been recently extended to liquid storage tanks. Although the benefits of seismic isolation systems have been well known in reducing seismic demands of tanks; however, these benefits have been rarely investigated in literature in terms of reduction in the probability of failure. In this paper, A vulnerability-based design approach of a sliding concave bearing system for an existing elevated liquid steel storage tank is presented by evaluating the probability of exceeding specific limit states. Firstly, nonlinear time history analyses of a three-dimensional stick model for the examined case study are performed using a set of ground motion records. Fragility curves of different failure modes of the tank are then obtained by the well-known cloud method. In the following, a seismic isolation system based on concave sliding bearings is proposed. The effectiveness of the isolation system in mitigating the seismic response of the tank is investigated by means of fragility curves. Finally, an optimization of design parameters for sliding concave bearings is determined based on the reduction of the tank vulnerability or the probability of failure.


2012 ◽  
Vol 452-453 ◽  
pp. 659-662
Author(s):  
Wei Wang ◽  
Yi Min Deng

Vibration isolation is a most widely used vibration protection method.The stiffness of vibration isolators in existing conventional type of vibration isolation system is usually of fixed value. This limits the system in exhibiting its vibration isolation effect in that, it has poor results for lower frequency vibration, especially for resonance frequency. Magneto-rheological elastomer is a new branch of Magneto-rheological materials. It’s an intelligent materials in that it’s shear modulus can be controlled by a magnetic field. It has wide application prospects in the vibration control area. This paper proposes using adjustable stiffness of magneto-rheological elastomer vibration isolation in vibration isolation system. By changing the current of vibration isolators coil to control the shear modulus of magneto-rheological elastomer, it can adjust the stiffness of the isolation system, making the system obtain wider vibration isolation frequency range. By exploying SimuLink software to analyze the vibration isolation system, it is found that such a design is effective and applicable.


Author(s):  
Yancheng Li ◽  
Jianchun Li

This paper presents a recent research breakthrough on the development of a novel adaptive seismic isolation system as the quest for seismic protection for civil structures, utilizing the field-dependent property of the magnetorheological elastomer (MRE). A highly-adjustable MRE base isolator was developed as the key element to form smart seismic isolation system. The novel isolator contains unique laminated structure of steel and MRE layers, which enable its large-scale civil engineering applications, and a solenoid to provide sufficient and uniform magnetic field for energizing the field-dependent property of MR elastomers. With the controllable shear modulus/damping of the MR elastomer, the developed adaptive base isolator possesses a controllable lateral stiffness while maintaining adequate vertical loading capacity. Experimental results show that the prototypical MRE base isolator provides amazing increase of lateral stiffness up to 1630%. Such range of increase of the controllable stiffness of the base isolator makes it highly practical for developing new adaptive base isolation system utilizing either semi-active or smart passive controls. To facilitate the structural control development using the adaptive MRE base isolator, an analytical model was developed to stimulate its behaviors. Comparison between the analytical model and experimental data proves the effectiveness of such model in reproducing the behavior of MRE base isolator, including the observed strain stiffening effect.


2012 ◽  
Vol 234 ◽  
pp. 96-101 ◽  
Author(s):  
Donato Cancellara ◽  
Fabio de Angelis

In the present work we have analyzed a particular base isolation system for the seismic protection of a multi-storey reinforced concrete (RC) building. The viscous dampers and friction sliders are the devices adopted in parallel for realizing the base isolation system. The base isolation structure has been designed and verified according to European seismic code EC8 and by considering for the friction sliders the influence of the sliding velocity on the value of the friction coefficient. A dynamic nonlinear analysis for a three-dimensional base isolated structure has been performed. Recorded accelerograms for bi-directional ground motions have been used which comply with the requirements imposed by EC8 for the representation of a seismic action in a time history analysis. In this paper a comparative analysis is presented between the base isolated structure with the described hybrid base isolation system and the traditional fixed base structure.


2012 ◽  
Vol 446-449 ◽  
pp. 378-381
Author(s):  
Jian Min Jin ◽  
Ping Tan ◽  
Fu Lin Zhou ◽  
Yu Hong Ma ◽  
Chao Yong Shen

Mid-story isolation structure is developing from base isolation structures. As a complex structural system, the work mechanism of base isolation structure is not entirely appropriate for mid-story isolation structure, and the prolonging of structural natural period may not be able to decrease the seismic response of substructure and superstructure simultaneously. In this paper, for a four-story steel frame model, whose prototype first natural period is about 1s without seismic isolation design, the seismic responses and isolation effectiveness of mid-story isolation system with lead rubber bearing are studied experimentally by changing the location of isolation layer. Respectively, the locations of isolation layer are set at bottom of the first story, top of the first story, top of the second story and top of the third story. The results show that mid-story isolation can reduce seismic response in general, and substructure acceleration may be amplified.


Sign in / Sign up

Export Citation Format

Share Document