The Impact of Arbuscular Mycorrhizae and Phosphorus Status on Growth of Two Turfgrass Species

1997 ◽  
Vol 2 (3) ◽  
pp. 1-14 ◽  
Author(s):  
C. Charest ◽  
G. Clark ◽  
Y. Dalpe

2017 ◽  
Vol 9 (1) ◽  
pp. 55-59
Author(s):  
Dilpreet Talwar ◽  
Kulbir Singh ◽  
Jagdish Singh

Biofertilizers improves the soil microbial content, Soil nutrient status and nutrient uptake by plant. In an experiment, fifteen treatments comprised of various combinations of biofertilizers, organic manures and chemical fertilizers were compared to access the impact of different sources of nutrient on performance of onion. The highest soil organic carbon (0.40%) was observed in the treatments T12 (Farm Yard Manure (FYM) @ 20 t/ha) and T11 (FYM myctes count (29.9 X 104) was recorded in T11 (FYM @ 20 t/ha + Azotobacter + VAM) treatment while highest fungal @ 20 t/ha + Azotobacter + Vesicular-Arbuscular Mycorrhizae (VAM)). Highest bacterial (24.5 X 106) and actino-count (17.5 X 103) was observed in T3 (Azospirillium+ Recommended dose of NPK) treatment. At the time of harvesting, available nitrogen (N), available phosphorus (P) and available potassium (K) were higher in treatment T3 (Azospirillium + Recommended dose of NPK), T9 (Azotobacter+ VAM + Recommended dose of NPK) and T13 (Poultry treatment (162.6 Kg ha-1) as compared to all other treatments except T1 and T9 treatments while P uptake (13.6 Kg ha-Manure @ 5t/ha) treatments respectively than that in other treatments. Azospirillum and Azotobacter application along with recommended dose of N, P and K improved the fertility status of soil. The N uptake was significantly higher in T3 treatments. The present study highlights the need of use of biofertilizers along with organic and inorganic 1) was significantly higher in T9 treatment than that in other treatments except T1, T3, T5 and T7 treatments. The K uptake was significantly higher in T3 treatment (126.9 Kg ha-1) as compare to all other treatments except T1 and T9 manures/fertilizer to enhance the nutrient availability and improve soil health.



2012 ◽  
Vol 610-613 ◽  
pp. 2968-2973 ◽  
Author(s):  
Ya Jie Zhao ◽  
Xin Chen ◽  
Yi Shi ◽  
Cai Yan Lu ◽  
Bin Huang ◽  
...  

The vegetable utilization rate of phosphorus fertilizer in greenhouse condition was low in the season of fertilizer application, resulting in phosphorus accumulation in the top soil year after year. The risk of phosphorus loss through leaching increased under the circumstance of inappropriate watering management and fertilization. In this study, leaching experiments using columns packed with a greenhouse soil with different soil phosphorus status (low, medium and high levels) were carried out under greenhouse condition to investigate the impact of fertilizer application on phosphorus leaching from greenhouse soil. The fertilization treatments included no fertilizer [CK], organic manure and chemical fertilizer [M+NPK], organic manure [M], chemical fertilizer [NPK]. The vertical migration and leaching loss of soil phosphorus were measured. Results were as follows: (1) total phosphorus (TP) content increased with the extension of leaching time. In the low-level- and medium-level-phosphorus greenhouse soils, TP concentration in the effluent increased with the application of manure; (2) In the high-level-phosphorus greenhouse soil, phosphorus in the effluent from the treatment with the use of fertilizer was the highest TP, with accumulative leaching amount of 2.85 mg in 51 days. The leaching of phosphorus became small after 36 days of leaching experiment. Our study showed that application of manure and chemical fertilizer at proper rates according to soil phosphorus status is beneficial to reduce the leaching loss of phosphorus to the environment.



Author(s):  
Maílson Jesus ◽  
Silvana Scalon ◽  
Daiane Dresch ◽  
Jéssica Aline Linné ◽  
Vânia Lima ◽  
...  

Dipteryx alata Vogel (Fabaceae) is a fruit tree species native to the Cerrado with ecological and economic potential. However, water deficit can be a limiting factor to the initial growth of this species, requiring knowledge on technologies that can alleviate this stressful effect. We hypothesized that inoculation with arbuscular mycorrhizae fungi contributes to stress mitigation during and after water deficit. D. alata seedlings were subjected to two water regimes (control: seedlings irrigated daily; and water deficit: irrigation suspension); associated with inoculation with arbuscular mycorrhizal fungi (AMF): AM- = without inoculation; AM+ = inoculation with Rhizophagus clarum; and three evaluation periods: T0 - time zero; F0 - zero photosynthesis (seven days of water restriction); REC - recovery (100 days). Water deficit impaired water relations, decreasing the quality of D. alata seedlings. AM+ seedlings showed higher relative water content (RWC), leaf area ratio, chlorophyll index, and Rubisco carboxylation capacity (A/Ci), which helped in photosynthetic metabolism. Inoculation with R. clarum alleviated the impact of stress on water use efficiency, water potential, RWC, and A/Ci in REC. Inoculation with AMF is a promising management technique in the production of D. alata seedlings for increasing seedling quality and resilience to water deficit.



Author(s):  
Voko Bi Rosin Don Rodrigue ◽  
Konan Adjoua Estelle ◽  
Kouassi Kouassi Clément ◽  
Kocoun Konan Dieudonné ◽  
Konaté Ibrahim

Aims: Pterygota macrocarpa, a common species in the forests of Côte d'Ivoire, is threatened with extinction due to overexploitation. Protective measures for P. macrocarpa could consist in the integration of arbuscular mycorrhizae in the reforestation of this species. The objective of this study was to evaluate the impact of arbuscular mycorrhizae inoculation on the resistance and development of P. macrocarpa plants. Study Design: The design is completely randomized and includes one (1) plant species (Pterygota macrocarpa), three (3) treatments (local inoculum 1, commercial inoculum 2 and non-inoculated control) and 20 seedlings per treatment. Place and Duration of Study: The experimental study was set up at the border of the experimental forest of the Northern site of INP-HB (National Polytechnic Institute Houphouët-Boigny, Yamoussoukro, Côte d’Ivoire) from February to May 2018. Methodology: Thus, from seedlings collected in the arboriculture of the INP-HB of Yamoussokro, the effects of mycorrhization through treatments on the mineral nutrition and on the growth parameters of P. macrocarpa were evaluated during 120 days of culture in nursery. Results: The mycorrhised plants survived 100% while the control plants had 90% survival rate. The mycorrhizal intensity of the roots was 19.21% for inoculum 1 and 10.40% for inoculum 2. The plants treated with inoculum 1 had the highest mineral content, especially phosphorus (0.3 ppm) and nitrogen (2.6%). The vegetative growth of inoculum 1 treated plants was more accelerated than that of the other two treatments. Local inoculum 1 was more effective than commercial inoculum 2. Conclusion: The integration of local mycorrhizal inocula in the reforestation of P. macrocarpa seedlings could be a sustainable solution for the restoration of degraded forests.



Author(s):  
V. R. Senthamizhkumaran ◽  
P. Santhy ◽  
D. Selvi ◽  
T. Kalaiselvi ◽  
K. G. Sabarinathan

To study the impact of vermicompost, arbuscular mycorrhizae and FYM application on the rice ecosystem at low land, a field experiment was conducted with rice CO(R) 51 at the Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University in Coimbatore during the winter of 2020. The experiment was framed in Randomized Block Design comprising of 8 treatments viz., Recommended Dose of Fertilizer Soil Test Crop Response approach (T1), RDF 75 % + Farm Yard Manure @ 12.5 t ha-1 (T2), T2 + Seed treatment with Azospirillum and Phosphobacteria + Soil application of AM fungi (T3), RDF 75 % + Vermicompost @ 5 t ha-1 (T4), T4 + Seed treatment with Azospirillum and Phosphobacteria + Soil application of AM fungi (T5), FYM @ 12.5 t ha-1 + Seed treatment with Azospirillum and Phosphobacteria + Soil application of AM fungi (T6), Vermicompost @ 5 t ha-1+ Seed treatment with Azospirillum and Phosphobacteria + Soil application of AM fungi (T7) and Absolute control (T8) and replicated thrice. The maximum microbial population were registered in the plots that received integrated nutrient application of RDF 75 % STCR approach + Vermicompost 5 t ha-1 + seed treatment with Azospirillum and Phosphobacteria + Soil application of AM fungi. Rice root architecture has changed significantly as a result of mycorrhizal inoculation. Mycorrhizal rice plants have more root volume, length, and spread than plants without mycorrhizae. Nutrient retention and availability influenced the presence of microbial-mediated metabolic activities and nutrient transformations during crop growth. Bacteria, fungus, and actinomycetes became less abundant as the crop reached harvest. The population density of mycorrhizospheres that utilize both organic and inorganic fertilizers is higher. The treatments that received Vermicompost or FYM with Vesicular Arbuscular Mycorrhizae and Nitrogen, Phosphorous & Potassium fertilizers obtained the highest yields of rice grain and straw (6740 and 7840 kg ha-1) respectively, and it was clear that the combination of Vermicompost or FYM, VAM and along with NPK fertilizers produced significantly higher yields than their individual applications and absolute control.



2021 ◽  
Author(s):  
Audry Tshibangu Kazadi ◽  
Jonas Lwalaba wa Lwalaba ◽  
Bibich Kirika Ansey ◽  
Judith Mavungu Muzulukwau ◽  
Gabriella Manda Katabe ◽  
...  

AbstractSoil fertility in the Lubumbashi region often proves to be limiting factor for crop production due to their low nutrient reserves. The objective of this work was to evaluate the impact of arbuscular mycorrhizae on phosphorus uptake by maize on Ferralsol. The trial was conducted in pots with 30 kg or 60 kg of P2O5 ha−1 and a control. These three levels of phosphorus were combined or not with arbuscular mycorrhizae. The combinations of 30 kg or 60 kg of phosphorus with the inoculum led to a male flowering of maize at 63 days after semi. Maize treated with 60 kg of phosphorus ha−1 formed very few or almost no blisters in the roots. Cob weight, length, diameter, number of rows and kernel weight varied significantly with phosphorus on both inoculated and uninoculated pots. The inoculated plants had high averages for these yield parameters. Due to the lack of phosphate fertilizer, inoculum alone can be an alternative to phosphorus provided that nitrogen and potassium are added, resulting in small but seed-filled ears compared to the phosphorus-free control without mycorrhizae, which resulted in empty ears. Yield varied significantly with the addition of phosphorus (0.3 to 6.1 tons ha−1) and less significantly with inoculum (3 to 3.7 t ha−1). The combination of treatments showed a significant difference in favour of the 60 kg of phosphorus or 60 kg of phosphorus associated with the inoculum. The highest phosphorus content was obtained on the inoculum treatment alone, which provided 1.4 mg phosphorus g−1 maize compared to other treatments, which provided 0.69 to 0.71 mg phosphorus g−1 maize.



Geoderma ◽  
2008 ◽  
Vol 148 (1) ◽  
pp. 51-54 ◽  
Author(s):  
Henrik Breuning-Madsen ◽  
Camilla Bloch Ehlers ◽  
Ole K. Borggaard


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 950
Author(s):  
María Videgain-Marco ◽  
Pedro Marco-Montori ◽  
Clara Martí-Dalmau ◽  
María del Carmen Jaizme-Vega ◽  
Joan Josep Manyà-Cervelló ◽  
...  

The effects of biochar on soil–plant–microorganisms systems are currently being extensively investigated. Considering that arbuscular mycorrhizal fungi (AMF) play an essential role in nutrient dynamics, the present study aims at understanding vine shoot-derived biochar effects on AMF activity and the impact of their multiplication in soils on water-stress resistance of plants. Three agronomic tests were performed in greenhouse pots. The first experiment evaluated the effects of three factors: final pyrolysis temperature for biochar production (400 °C and 600 °C), application rate (0 weight-wt.- % as a control, 1.5 wt. %, and 3.0 wt. %) and texture of the growing media (sandy-loam and clay-loam origin) on AMF, microbial communities and phosphatase activity. In the second experiment, an indigenous consortium of AMF was multiplied through the solid substrate method and sorghum as a trap plant with biochar addition. This process was compared to a control treatment without biochar. Obtained inocula were tested in a third experiment with lettuce plants under different water irrigation conditions. Results from the first experiment showed a general increase in AMF activity with the addition of the biochar produced at 400 °C in the sandy-loam texture substrate. Results of the second experiment showed that the biochar addition increased AMF root colonization, the number of AMF spores and AMF infective potential. Results of the third experiment showed that biochar-derived AMF inoculum increased AMF root colonization, AMF spores, dry biomass and the SPAD index in a lettuce crop under low-water irrigation conditions.



1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.



1962 ◽  
Vol 14 ◽  
pp. 169-257 ◽  
Author(s):  
J. Green

The term geo-sciences has been used here to include the disciplines geology, geophysics and geochemistry. However, in order to apply geophysics and geochemistry effectively one must begin with a geological model. Therefore, the science of geology should be used as the basis for lunar exploration. From an astronomical point of view, a lunar terrain heavily impacted with meteors appears the more reasonable; although from a geological standpoint, volcanism seems the more probable mechanism. A surface liberally marked with volcanic features has been advocated by such geologists as Bülow, Dana, Suess, von Wolff, Shaler, Spurr, and Kuno. In this paper, both the impact and volcanic hypotheses are considered in the application of the geo-sciences to manned lunar exploration. However, more emphasis is placed on the volcanic, or more correctly the defluidization, hypothesis to account for lunar surface features.



Sign in / Sign up

Export Citation Format

Share Document