scholarly journals Structural, Optical and Electrochromic Investigations on Nano Crystalline MoO3 Thin Films

2018 ◽  
Vol 15 (1) ◽  
pp. 41-47 ◽  
Author(s):  
P. V. Kala ◽  
P. Mohanbabu ◽  
K. Srinivasarao

Thin films of MoO3 were deposited on quartz glass, Silicon (100) and Indium Tin Oxide (ITO) substrates by dc magnetron sputtering at two substrate temperatures of 300 K and 600 K and at sputtering pressures of 5 Pa and 10 Pa and at a fixed sputtering power of 50 W. The deposited films were characterized by Grazing Incidence X-ray Diffraction (GIXRD), Raman and Optical Transmittance Spectra and Cyclic Voltametry (CV) studies. The GIXRD reveales that the crystallanity of films starts at low temperature (300 K) and crystallizes in orthorhombic phase. The crystallanity increases with increase of substrate temperature. The Raman spectral studies reveals strong shift in the emission peak position for films deposited at 5 Pa and 300 K, and there is no significant peaks in case of films deposited at 10 Pa and 600 K. The optical transmittance of the films is 78 % for films deposited at 5 Pa and 300 K and is maximum (95 %) when deposited at 600 K. The transmittance is decreasing to 90 % with increase in sputtering pressure. The absorption edge is shifting towards lower wavelength with increase in substrate temperature due to increase in the reactivity of the ionic species (molybdenum ions and oxygen ions) and shifting towards higher wavelengths with sputtering pressures due to the scattering of atomic species which decreases the reactivity between ionic species. The average diffusion coefficient (D) of the films deposited at 5 Pa and 300 K is 7x10-14 cm2/sec and decreasing with increase in substrate temperature of the deposited films. With further increase in the sputtering pressure to 10 Pa and at low temperatures a large increment in the D value was observed (8.2x10-12 cm2/sec) due to the enhancement in the mobility of the Li+ ions through the internal and intra grain boundaries due to low grain size of MoO3 (8 nm) of the film. The measured thickness of the films by Taly stip profilometer is 3000 Å.


2022 ◽  
Vol 1048 ◽  
pp. 189-197
Author(s):  
Tippasani Srinivasa Reddy ◽  
M.C. Santhosh Kumar

In this study report the structural and optical properties of Copper Tin Sulfide (Cu2SnS3) thin films on indium tin oxide (ITO) substrate using co-evaporation technique. High purity of copper, tin and sulfur were taken as source materials to deposit Cu2SnS3 (CTS) thin films at different substrate temperatures (200-350 °C). Further, the effect of different substrate temperature on the crystallographic, morphological and optical properties of CTS thin films was investigated. The deposited CTS thin films shows tetragonal phase with preferential orientation along (112) plane confirmed by X-ray diffraction. Micro-Raman studies reveled the formation of CTS thin films. The surface morphology, average grain size and rms values of the deposited films are examined by Scanning electron spectroscopy (SEM) and Atomic Force Microscopy (AFM). The Energy dispersive spectroscopy (EDS) shows the presence of copper, tin and sulfur with a nearly stoichiometric ratio. The optical band gap (1.76-1.63 eV) and absorption coefficient (~105 cm-1) of the films was calculated by using UV-Vis-NIR spectroscopy. The values of refractive index, extinction coefficient and permittivity of the deposited films were calculated from the optical transmittance data.



2013 ◽  
Vol 678 ◽  
pp. 140-143
Author(s):  
Rangasamy Balasundraprabhu ◽  
N. Muthukumarasamy ◽  
E.V. Monakhov ◽  
B.G. Svensson

Indium tin oxide (ITO) thin films exhibiting good transmittance and conductivity suitable for solar cell applications have been prepared on Si(100) and fused silica substrates by optimizing the dc sputtering parameters such as power density and Ar partial pressure. Structural analysis of the as-deposited and annealed ITO films indicated that the as-deposited films are predominantly amorphous, whereas the films annealed at 200–400 °C are found to be of polycrystalline nature exhibiting dominant peaks corresponding to the (222) and (400) planes. The optical transmittance and band gap values of the films are observed to exhibit a change on annealing. From the ellipsometry studies on ITO/Si annealed at 300°C, it is found that graded layer consist of the mixing of two ITO materials with slightly different optical constants and the grading is almost linear. The resistivity of the ITO films is found to decrease with annealing temperature, correlating with the improvement in the crystal quality, and values in the range of 2-3 x10-4 Ω-cm are observed for the films annealed at 300°C. Surface topography study of the films has been performed using atomic force microscope(AFM) and the results are discussed.



2011 ◽  
Vol 1328 ◽  
Author(s):  
KyoungMoo Lee ◽  
Yoshio Abe ◽  
Midori Kawamura ◽  
Hidenobu Itoh

ABSTRACTCobalt hydroxide thin films with a thickness of 100 nm were deposited onto glass, Si and indium tin oxide (ITO)-coated glass substrates by reactively sputtering a Co target in H2O gas. The substrate temperature was varied from -20 to +200°C. The EC performance of the films was investigated in 0.1 M KOH aqueous solution. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy of the samples indicated that Co3O4 films were formed at substrate temperatures above 100°C, and amorphous CoOOH films were deposited in the range from 10 to -20°C. A large change in transmittance of approximately 26% and high EC coloration efficiency of 47 cm2/C were obtained at a wavelength of 600 nm for the CoOOH thin film deposited at -20°C. The good EC performance of the CoOOH films is attributed to the low film density and amorphous structure.



Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 539 ◽  
Author(s):  
Dimitre Dimitrov ◽  
Che-Liang Tsai ◽  
Stefan Petrov ◽  
Vera Marinova ◽  
Dimitrina Petrova ◽  
...  

The integration of high uniformity, conformal and compact transparent conductive layers into next generation indium tin oxide (ITO)-free optoelectronics, including wearable and bendable structures, is a huge challenge. In this study, we demonstrate the transparent and conductive functionality of aluminum-doped zinc oxide (AZO) thin films deposited on glass as well as on polyethylene terephthalate (PET) flexible substrates by using an atomic layer deposition (ALD) technique. AZO thin films possess high optical transmittance at visible and near-infrared spectral range and electrical properties competitive to commercial ITO layers. AZO layers deposited on flexible PET substrates demonstrate stable sheet resistance over 1000 bending cycles. Based on the performed optical and electrical characterizations, several applications of ALD AZO as transparent conductive layers are shown—AZO/glass-supported liquid crystal (LC) display and AZO/PET-based flexible polymer-dispersed liquid crystal (PDLC) devices.



2008 ◽  
Vol 55-57 ◽  
pp. 881-884 ◽  
Author(s):  
Thitinai Gaewdang ◽  
N. Wongcharoen ◽  
P. Siribuddhaiwon ◽  
N. Promros

CdTe thin films with different substrate temperatures have been deposited by thermal evaporation method on glass substrate in vacuum chamber having low pressure about 3.0x10-5 mbar. According to XRD analysis, CdTe thin films are polycrystalline belonging to cubic structure with preferential orientation of (111) plane. The strongest peak intensity of XRD is observed in the film prepared with substrate temperature of 150°C. Band gap and band tail values of the as-deposited films were evaluated from the optical transmission spectra. The lowest dark sheet resistance value was obtained from the film prepared with substrate temperature of 150°C as well. Regarding to our experimental results, it may be indicated that the 150°C substrate temperature is the most suitable condition in preparing CdTe thin films for solar cell applications.



2014 ◽  
Vol 997 ◽  
pp. 337-340
Author(s):  
Jian Guo Chai

Indium tin oxide (ITO) films were deposited on glass substrates by magnetron sputtering. Properties of ITO films showed a dependence on substrate temperature. With an increasing in substrate temperature, the intensity of XRD peak increased and the grain size showed an evident increasing. The results show that increasing substrate temperature remarkably improves the characteristics of the films. The sheet resistance of 10 Ω/sq and the maximum optical transmittance of 90% in the visible range with optimized conditions can be achicved. The results of experiment demonstrate that high-quality films have been achieved by this technique.



1999 ◽  
Vol 38 (Part 1, No. 5A) ◽  
pp. 2710-2716 ◽  
Author(s):  
Frederick Ojo Adurodija ◽  
Hirokazu Izumi ◽  
Tsuguo Ishihara ◽  
Hideki Yoshioka ◽  
Hiroshi Matsui ◽  
...  


1999 ◽  
Vol 38 (Part 1, No. 6A) ◽  
pp. 3448-3452 ◽  
Author(s):  
E. Terzini ◽  
G. Nobile ◽  
S. Loreti ◽  
C. Minarini ◽  
T. Polichetti ◽  
...  


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Vempuluri Madhavi ◽  
Paruchuri Kondaiah ◽  
Obili Mahammad Hussain ◽  
Suda Uthanna

Pure and Mo-doped WO3 films were formed on ITO-coated glass substrate held at 473 K by RF magnetron sputtering technique. The structural, morphological, and optical properties of pure and Mo-doped WO3 thin films have been systematically studied. The structural properties revealed that the pure WO3 films exhibited a (020) reflection related to the orthorhombic phase of WO3, whereas Mo-doped films showed (200) reflection. The surface morphology revealed that pure WO3 films showed the dense surface and Mo-doped films contained agglomerated grains which were uniformly distributed on the surface of the substrate. The optical transmittance decreased from 85% to 75% for pure and Mo-doped WO3 films, respectively. The electrochromic properties of the films were measured by cyclic voltametry in 1 M Li2SO4 electrolyte solution. The optical modulation of pure WO3 films at near IR was 50%, and the calculated color efficiency was 33.8 cm2/C, while in Mo-doped WO3 the efficiency improved to 42.5 cm2/C.



2007 ◽  
Vol 136 (1) ◽  
pp. 37-40 ◽  
Author(s):  
A. Mohammadi Gheidari ◽  
F. Behafarid ◽  
G. Kavei ◽  
M. Kazemzad


Sign in / Sign up

Export Citation Format

Share Document