scholarly journals Design, Fabrication and Development of House Hold Utensil Cleaning Machine

2021 ◽  
Vol 18 (3) ◽  
pp. 266-277
Author(s):  
Sumit Desai ◽  
Dilip Choudhari

This work presents design and fabrication of efficient and economical ultrasonic utensil cleaning machine. Electrical energy is converted into Mechanical energy by transducer. Transducer vibrates with ultrasonic frequency supplied to it by the frequency producer. These vibrations produce cavitation bubbles in the solvent/water. The size of the bubbles is in micron range. The mass of the cavitation bubbles depend on the rate of recurrence of the transducer. These bubbles act as scrubber which scrub the surface of utensil thus removing the soils/dirt stick on it. The size of the bubble is so small it does not cause any damage to the surface of utensil. Higher the frequency, more homogeneous will be the cleaning. Rinsing is provided within the system which will make it more compact. To keep the contaminants away from the cleaned surface, sweep frequency is used. Rotation to the basket is given by the motor. This rotation helps to reduce the cycle time and also dry the surface of utensil by centrifugal action. So when the utensil is removed from the basket it is ready for use. By this technology cycle time will be reduced drastically. Without any human efforts it can clean the dirtiest stains from the oily utensils. All types of utensils can be cleaned whether it is ceramics, glass, copper, wood, aluminum, stainless steel, etc. This cleaning process is more hygienic and can clean more efficiently compared to conventional cleaning.

2020 ◽  
Vol 64 (1-4) ◽  
pp. 729-736
Author(s):  
Jincheng He ◽  
Xing Tan ◽  
Wang Tao ◽  
Xinhai Wu ◽  
Huan He ◽  
...  

It is known that piezoelectric material shunted with external circuits can convert mechanical energy to electrical energy, which is so called piezoelectric shunt damping technology. In this paper, a piezoelectric stacks ring (PSR) is designed for vibration control of beams and rotor systems. A relative simple electromechanical model of an Euler Bernoulli beam supported by two piezoelectric stacks shunted with resonant RL circuits is established. The equation of motion of such simplified system has been derived using Hamilton’s principle. A more realistic FEA model is developed. The numerical analysis is carried out using COMSOL® and the simulation results show a significant reduction of vibration amplitude at the specific natural frequencies. Using finite element method, the influence of circuit parameters on lateral vibration control is discussed. A preliminary experiment of a prototype PSR verifies the PSR’s vibration reduction effect.


2018 ◽  
Vol 7 (2-1) ◽  
pp. 433
Author(s):  
K. Sri Vamsi Krishna ◽  
Shiva Prasad ◽  
R. Sabari Vihar ◽  
K. Babitha ◽  
K Veeranjaneyulu ◽  
...  

The main objective of this study is to increase the aerodynamic efficiency of turbine mounted novel wing. The main motive behind this work is to reduce the drag by attaining the positive velocity gradient and generate power by converting the stagnation pressure which also acts as emergency power source. By using the energy source of free stream air, Mechanical energy is converted into electrical energy. The obtained power is presented in terms of voltage generated at various angles of attack with different Reynolds number. Experimental analysis is carried out for NACA4415 airfoil at various angles with respect to free stream ranging from 0deg to 30deg from laminar to turbulent Reynolds number. The results were obtained using the research tunnel at IARE aerodynamic facility center. The aerodynamic advantage of this design in terms of voltage is 9.5 V at 35m/s which can be utilized for the aircraft on board power systems.


2019 ◽  
Vol 17 (1) ◽  
pp. 95
Author(s):  
Jumadi Tangko ◽  
Remigius Tandioga ◽  
Ismail Djufri ◽  
Riza Haardiyanti

Flywheel is a rotating mechanical device, which is generally used on four-wheeled vehicles. Flywheel has a moment of inertia that is able to withstand changes in rotational speed. The energy in flywheel is mechanical energy. This mechanical energy will be converted by generators into electrical energy. At the flywheel-based power plant, tests are carried out in the form of rotation, the generator power of the generator under no load or load conditions, and the time needed for this generator to survive. The results showed that the ability of the flywheel-based power plant in the condition without a backup supply to the motor in the condition of a generator without a load is able to generate power of 860.1 W for 22 seconds, while in a load-bearing generator capable of generating electricity by 708.75 W for 18 seconds 


2021 ◽  
Vol 34 (2) ◽  
pp. 157-172
Author(s):  
Deepak Anand ◽  
Singh Sambyal ◽  
Rakesh Vaid

The demand for energy is increasing tremendously with modernization of the technology and requires new sources of renewable energy. The triboelectric nanogenerators (TENG) are capable of harvesting ambient energy and converting it into electricity with the process of triboelectrification and electrostatic-induction. TENG can convert mechanical energy available in the form of vibrations, rotation, wind and human motions etc., into electrical energy there by developing a great scope for scavenging large scale energy. In this review paper, we have discussed various modes of operation of TENG along with the various factors contributing towards its efficiency and applications in wearable electronics.


2019 ◽  
Vol 4 (2) ◽  
pp. 50-55
Author(s):  
Syarif Moh Rofiq Al- Ghony ◽  
Subuh Isnur Haryudo ◽  
Jati Widyo Leksono

The electric motor is a device that serves to transform electrical energy into mechanical energy of motion. In this case the designed control system motor 3 phase by Smartphones through bluetooth network to find out the effective range of extremity. The methods used in the form of data capture of measurement effective range the furthest that can be reached by bluetooth to activate relay SPDT and motor 3 phase. Results of testing the most effective distance of the otomasisasi control system of motor 3 phase maximum as far as 15 meters with a time of pause 0.5 seconds.


2014 ◽  
Vol 1014 ◽  
pp. 124-127
Author(s):  
Zhi Qiang Xu ◽  
Jian Huang

Wind turbines consists of three key parts, namely, wind wheels (including blades, hub, etc.), cabin (including gearboxes, motors, controls, etc.) and the tower and Foundation. Wind turbine wheel is the most important part ,which is made up of blades and hubs. Blade has a good aerodynamic shape, which will produce aerodynamic in the airflow rotation, converting wind energy into mechanical energy, and then, driving the generator into electrical energy by gearbox pace. Wind turbine operates in the natural environment, their load wind turbine blades are more complex. Therefore load calculations and strength analysis for wind turbine design is very important. Wind turbine blades are core components of wind turbines, so understanding of their loads and dynamics by which the load on the wind turbine blade design is of great significance.


2018 ◽  
Vol 29 (18) ◽  
pp. 3572-3581
Author(s):  
Suihan Liu ◽  
Ali Imani Azad ◽  
Rigoberto Burgueño

Piezoelectric energy harvesting from ambient vibrations is well studied, but harvesting from quasi-static responses is not yet fully explored. The lack of attention is because quasi-static actions are much slower than the resonance frequency of piezoelectric oscillators to achieve optimal outputs; however, they can be a common mechanical energy resource: from large civil structure deformations to biomechanical motions. The recent advances in bio-micro-electro-mechanical systems and wireless sensor technologies are motivating the study of piezoelectric energy harvesting from quasi-static conditions for low-power budget devices. This article presents a new approach of using quasi-static deformations to generate electrical power through an axially compressed bilaterally constrained strip with an attached piezoelectric layer. A theoretical model was developed to predict the strain distribution of the strip’s buckled configuration for calculating the electrical energy generation. Results from an experimental investigation and finite element simulations are in good agreement with the theoretical study. Test results from a prototyped device showed that a peak output power of 1.33 μW/cm2 was generated, which can adequately provide power supply for low-power budget devices. And a parametric study was also conducted to provide design guidance on selecting the dimensions of a device based on the external embedding structure.


1989 ◽  
Vol 4 ◽  
pp. 213-217 ◽  
Author(s):  
John Pojeta ◽  
Marija Balanc

Ultrasonic cleaning is a fast and usually safe method for cleaning many hard objects that are not glued together, and it is thus useful in paleontological laboratories. It is relatively ineffective for cleaning soft materials such as rubber, cloth, and fibers. Ultrasonic cleaning machines use sound waves, or mechanical vibrations, that are above the human hearing range, and operate at frequences up to 55,000 cycles per second. The sound waves are generated by a transducer (Figure 1), which changes high frequency electrical energy to mechanical energy. This mechanical energy, or vibration, is then coupled into the liquid in the cleaning tank. The vibrations cause alternating high and low pressure waves in the liquid. This action forms millions of microscopic bubbles, which expand during low pressure waves and form small cavities. During the high pressure waves, these cavities collapse, or implode, creating a mechanical scrubbinglike action, which loosens dirt on all surfaces in contact with the cleaning solution. This action can take place up to 55,000 times a second, making it seem as though the dirt is being blasted from the surface and cavities of the object being cleaned. Ultrasonic cleaning is effective wherever capillary action will take the solution. Complete cleaning usually requires from 30 seconds to two minutes (Anonymous, 1983).


Sign in / Sign up

Export Citation Format

Share Document