scholarly journals The Performance of p-Aminosalicylic Acid As Reducing and Stabilizing Agent in Silver Nanoparticles Synthesis

2019 ◽  
Vol 35 (1) ◽  
pp. 56-63 ◽  
Author(s):  
Dian Susanthy ◽  
Sri Juari Santosa ◽  
Eko Sri Kunarti

In this study, silver nanoparticles (AgNPs) were successfully synthesized using p-aminosalicylic acid as a reducing and stabilizing agent simultaneously. The AgNPs was synthesized by mixing silver nitrate solution as a precursor with the pH adjusted by p-aminosalicylic acid solution and heating it in a boiling water bath. The formed AgNPs were analyzed using UV-Vis spectrophotometry to evaluate their SPR absorbance in the wavelength range of 400-500 nm. The optimum reaction time is 10 min and the optimum pH is 11. The AgNPs with the optimum synthesis condition have average size of 32.3 nm when characterized using PSA, spherical morphology when characterized using TEM, and face-centered cubic crystal when chara­cterized using XRD. The formed AgNPs had good stability for more than 2 months. The mechanism of silver ion reduction and AgNPs stabilization by p-aminosalicylic acid were also proposed in the paper based on the FTIR analysis result.

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1777 ◽  
Author(s):  
Md. Mahiuddin ◽  
Prianka Saha ◽  
Bungo Ochiai

A green synthesis of silver nanoparticles (AgNPs) was conducted using the stem extract of Piper chaba, which is a plant abundantly growing in South and Southeast Asia. The synthesis was carried out at different reaction conditions, i.e., reaction temperature, concentrations of the extract and silver nitrate, reaction time, and pH. The synthesized AgNPs were characterized by visual observation, ultraviolet–visible (UV-vis) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), energy dispersive x-ray (EDX), and Fourier transform infrared (FTIR) spectroscopy. The characterization results revealed that AgNPs were uniformly dispersed and exhibited a moderate size distribution. They were mostly spherical crystals with face-centered cubic structures and an average size of 19 nm. The FTIR spectroscopy and DLS analysis indicated that the phytochemicals capping the surface of AgNPs stabilize the dispersion through anionic repulsion. The synthesized AgNPs effectively catalyzed the reduction of 4-nitrophenol (4-NP) and degradation of methylene blue (MB) in the presence of sodium borohydride.


2018 ◽  
Vol 18 (3) ◽  
pp. 421 ◽  
Author(s):  
Dian Susanthy ◽  
Sri Juari Santosa ◽  
Eko Sri Kunarti

A study to examine the performance of p-aminobenzoic acid as both reducing agent for silver nitrate to silver nanoparticles (AgNPs) and stabilizing agent for the formed AgNPs has been done. The synthesis of AgNPs was performed by mixing silver nitrate solution as precursor with p-aminobenzoic acid solution and heating it in a boiling water bath. After the solution turned to yellow, the reaction stopped by cooling it in tap water. The formed AgNPs were analyzed by using UV-Vis spectrophotometry to evaluate their SPR absorption in wavelength range of 400–500 nm. The synthesis process was highly depend on the pH, reaction time, and mole ratios of the reactants. The synthesis only occur in pH 11 and at reaction time 30 min, the particle size of the formed AgNPs was 12 ± 7 nm. Longer reaction time increased the reducing performance of p-aminobenzoic acid in AgNPs synthesis but decreased its stabilizing performance. The increase of silver nitrate amount relative to p-aminobenzoic acid in the synthesis increased the reducing and stabilizing performance of p-aminobenzoic acid and the optimum mole ratio between AgNO3 and p-aminobenzoic acid was 5:100 (AgNO3 to p-aminobenzoic acid).


Author(s):  
Hend Ezzat Salama ◽  
Mohamed Samir Abdel Aziz

Background:: Novel eco-friendly silver nanocomposites of xanthan/chitosan biguanidine hydrochloride polyelectrolyte complexes were successfully prepared. Methods:: Silver nanoparticles (AgNPs) were formed through an insitu eco-friendly reduction by the non-toxic polysaccharides without the usage of toxic reagents. FTIR confirmed the successful preparation of the nanocomposites while XRD confirmed the presence of AgNPs with face-centered cubic structures. TEM confirmed the homogeneous distribution of AgNPs with an average size of 14.1 nm. SEM was used to study the surface morphology of the nanocomposites while the energy-dispersive X-ray spectroscopy (EDX) confirmed the presence of AgNPs. Results:: Thermogravimetric analysis showed that the thermal stability was improved in the presence of AgNPs as detected from the calculated integral procedure decomposition temperature. Antibacterial activity against different bacteria species was significantly improved upon increasing the content of AgNPs. Conclusion:: Due to their interesting properties, the prepared polyelectrolyte complexes and their AgNPs nanocomposites could be employed potentially in many biomedical applications like drug delivery.


2020 ◽  
Vol 20 (3) ◽  
pp. 1678-1684
Author(s):  
Jiraporn Chumpol ◽  
Sineenat Siri

Green synthesis offers an eco-friendly and low-cost approach for the synthesis of silver nanoparticles (AgNPs). Many studies have reported on the use of biomolecules, especially plant extracts, as reducing and/or stabilizing agents in place of toxic chemicals. This study reports on the use of bacterial genomic DNA as an alternative stabilizing agent for the green synthesis of AgNPs under light activation. With both increased DNA quantities and reaction times under light exposure, more stabilized AgNPs formed as indicated by the surface plasmon resonance intensities. The synthesized AgNPs were spherical with an average size of 61.36±10.15 nm as calculated using the dynamic light scattering (DLS) technique. The X-ray diffraction, selected area electron diffraction, and high resolution transmission electron microscope (TEM) analyses confirmed the formation of face-centered cubic (fcc) structured AgNPs. The produced AgNPs exhibited antibacterial activities against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, suggesting its potential application as an antibacterial agent.


2018 ◽  
Vol 50 (8) ◽  
pp. 710-719
Author(s):  
Shengtao Gao ◽  
Honglong Xing

Nanosilver/poly(acetoacetoxyethyl methacrylate–styrene) (nano-Ag/P(AAEM-St)) composites were synthesized via emulsifier-free emulsion with silver nitrate solution, AAEM, and St monomer copolymerization by ultrasonic. The morphology and structure of the composites were characterized by ultraviolet and visible spectroscopy, X-ray diffractometer, and transmission electron microscopy, respectively. The results show that Ag nanoparticles with face-centered cubic structure are homogeneously dispersed in the P(AAEM-St) matrix. The thermal stability and the thermal degradation kinetics of P(AAEM-St) were investigated using the thermogravimetric analysis and Kissinger and Flynn–Wall–Ozawa method, respectively. The results prove that the thermal stability of the pure P(AAEM-St) is better than that of the nano-Ag/P(AAEM-St) composites.


Author(s):  
SNEHA THAKUR ◽  
KRISHNA MOHAN G

Objective: The main objective of the research work is to evaluate the antityrosinase potential of onion DNA silver nanoparticles (AgNPs). Methods: The onions were procured from the local market and DNA was extracted from onions using detergent and methylated spirit. The isolated DNA was selected for synthesis of AgNPs which acts as capping and reducing agent. About 10 ml of the DNA extract was added to 90 ml of 0.1 N silver nitrate solution. After 24 h incubation, the solution turned dark brown, which indicates the formation of AgNPs. The synthesized DNA AgNPs were characterized by ultraviolet-visible, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) studies. Results: The results revealed that the particles were uniform in shape with face-centered cubic structure. The particles are 153±20.4 nm in size and were no signs of agglomeration measured by DLS studies. The FTIR spectroscopy revealed B form of DNA along with strong N-H stretching, C=N stretching, and also asymmetric vibrations of phosphate groups characteristic for DNA molecule. The XRD studies revealed the face-centered cubic structure. SEM studies revealed the spherical structure with average particle size of 150±0.1 nm for single DNA nanoparticles. The onion DNA AgNPs were further investigated for its antityrosinase activity against the standard kojic acid and were to have anticancer potential nearer to the standard. Conclusion: From the results, it is evident that the synthesized onion DNA AgNPs have antityrosinase potential and can be further investigated for in vivo anticancer potential in future.


2020 ◽  
Vol 9 (1) ◽  
pp. 503-514 ◽  
Author(s):  
Khaleeq Uz-Zaman ◽  
Jehan Bakht ◽  
Bates Kudaibergenova Malikovna ◽  
Eman R. Elsharkawy ◽  
Anees Ahmed Khalil ◽  
...  

AbstractSynthesis of nanoparticles is a fast-growing area of interest in the current development in science and technology. Nanoparticles are also used in biomedical applications. Green synthesis of nanoparticles is an environmental friendly and cost-effective technique. Trillium govanianum Wall. Ex. Royle crude extract was used for the eco-friendly genesis of silver nanoparticles (AgNPs). Aromatic amines were the functional groups involved in the bio-fabrication and synthesis of the AgNPs. The production of AgNPs was established by the appearance of brown color. The manufactured AgNPs were characterized by UV-Vis spectrophotometer, X-ray diffractometer, and FTIR spectrophotometer. AgNPs were face-centered cubic in nature with an average size of 9.99 nm. The produced AgNPs (18 µL disc−1) showed substantial antibacterial (53.74, 52.75, 51.61, 43.00, 36.84, and 36.84%) and antifungal (54.05, 42.11, 41.10, 40.85, 30.55, and 29.73%) potential against the tested bacterial (X. campestris, P. aeruginosa, S. aureus, E. coli, B. subtilis, and K. pneumoniae) and fungal (A. alternaria, Paecilomyces, C. albicans, Curvularia, A. niger, and Rhizopus) strains, respectively.


2020 ◽  
Vol 21 (4) ◽  
pp. 177
Author(s):  
Siti Suhartati ◽  
Iwan Syahjoko Saputra ◽  
Dwinna Rahmi ◽  
Yoki Yulizar ◽  
Sudirman Sudirman

BIOREDUCTION AND CHARACTERIZATION OF SILVER NANOPARTICLES FROM OIL PALM EMPTY FRUIT BUNCH (OPEFB). The synthesis of silver nanoparticles was successfully carried out by extracting oil palm empty fruit bunch. The precursor used was silver nitrate (AgNO3) with a concentration of 9x10-4 M and 5 wt% of the oil palm empty fruit bunch extract. OPEFB acted as a capping agent in the synthesis of silver nanoparticles. The bioreduction method Ag+ to Ag0 produced a silver nanoparticle colloid in brown color. The results of the UV-Vis spectrophotometer showed the silver nanoparticles colloids spectrum at a wavelength of 420 nm with an absorbance value of 0.5. FTIR shows the reduction and shift of absorption peak in the hydroxyl functional group (-OH) at wavenumbers of 3323 cm-1 and the presence of absorption peaks at 560 cm-1. While, XRD pattern showed the specific crystallinity peaks of silver nanoparticles at 2θ: 33.24°; 39.98°; 61.23°; dan 79.13° respectively with the face-centered cubic crystal structure (FCC) and crystallite size of 15 nm. PSA analysis showed two specific peaks with an average size distribution silver nanoparticles of 43.5 nm and a PDI value of 0.4. Analysis of TEM shows the average particle size of 20 nm with a spherical particle shape.


2018 ◽  
Vol 55 (1A) ◽  
pp. 45
Author(s):  
Le Thi An Nhien

In this study, silver nanoparticles (AgNPs) were prepared by gamma rays irradiation of 1.0, 2.5, 5.0 and 10 mM silver nitrate solution using chitosan as a stabilizer. UV spectra, morphology and size of AgNPs irradiated at different doses were characterized by using UV-vis spectrophotometer and TEM images. The obtained results indicated that the average size of AgNPs increased by the increase of silver concentration in irradiated solution or the degree of acetylation of chitosan, while the increase of chitosan concentration was found to be a functional key for reducing the average size of particles in AgNPs product. In vitro test, AgNPs inhibited the growth of Corynespora cassiicola. In particularly, the inhibitory efficiency of AgNPs on the growth of C. cassiicola on rubber leaf extract media increased from 52.1 to 100 % when the average particle size of particles in AgNPs product decreased from 15 to 5 nm at the concentration of 50 ppm. In addition, the increase of AgNPs concentration from 10 to 90 ppm also enhanced the antifungal activity to be from 6.3 to 100 %, respectively. It suggests that the silver nanoparticles/chitosan (AgNPs/chitosan) synthesized by γ-rays irradiation method is a very promising fungicidal product applying for treating C. cassiicola, a serious pathogen fungus on rubber trees.


2011 ◽  
Vol 332-334 ◽  
pp. 930-934
Author(s):  
Hong Lin ◽  
Ling Chen ◽  
De Suo Zhang ◽  
Yu Yue Chen

A hyperbranched polymer (HBP-NH2) acting as a reducing agent and stablizer agent has been synthesized to investigate the stability of silver nanoparticles antimicrobial agent, which were prepared in a hyperbranched polymer matrix by a reaction with silver nitrate solution. The antimicrobial agents generated were characterized by different spectroscopic and analytical techniques such as DLS, TEM and UV-vis, which confirm the formation of well-dispersed silver nanoparticles with average size around 12.0 nm. Furthermore, antimicrobial and mechanical properties of nanosilver treated cotton fabrics were investigated. The results showed that stable silver nanoparticles collide solution with 12 nm, applied on cotton fabric under certain condition, could produce ideal antibacterial rate over 94% against both Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus) even after 50 consecutive washings.


Sign in / Sign up

Export Citation Format

Share Document