scholarly journals Prediction of Bike Sharing Demand

2017 ◽  
Vol 10 (1) ◽  
pp. 219-226 ◽  
Author(s):  
Purnima Sachdeva ◽  
K N Sarvanan

Bike sharing systems have been gaining prominence all over the world with more than 500 successful systems being deployed in major cities like New York, Washington, London. With an increasing awareness of the harms of fossil based mean of transportation, problems of traffic congestion in cities and increasing health consciousness in urban areas, citizens are adopting bike sharing systems with zest. Even developing countries like India are adopting the trend with a bike sharing system in the pipeline for Karnataka. This paper tackles the problem of predicting the number of bikes which will be rented at any given hour in a given city, henceforth referred to as the problem of ‘Bike Sharing Demand’. In this vein, this paper investigates the efficacy of standard machine learning techniques namely SVM, Regression, Random Forests, Boosting by implementing and analyzing their performance with respect to each other.This paper also presents two novel methods, Linear Combination and Discriminating Linear Combination, for the ‘Bike Sharing Demand’ problem which supersede the aforementioned techniques as good estimates in the real world.

2021 ◽  
Author(s):  
Praveeen Anandhanathan ◽  
Priyanka Gopalan

Abstract Coronavirus disease (COVID-19) is spreading across the world. Since at first it has appeared in Wuhan, China in December 2019, it has become a serious issue across the globe. There are no accurate resources to predict and find the disease. So, by knowing the past patients’ records, it could guide the clinicians to fight against the pandemic. Therefore, for the prediction of healthiness from symptoms Machine learning techniques can be implemented. From this we are going to analyse only the symptoms which occurs in every patient. These predictions can help clinicians in the easier manner to cure the patients. Already for prediction of many of the diseases, techniques like SVM (Support vector Machine), Fuzzy k-Means Clustering, Decision Tree algorithm, Random Forest Method, ANN (Artificial Neural Network), KNN (k-Nearest Neighbour), Naïve Bayes, Linear Regression model are used. As we haven’t faced this disease before, we can’t say which technique will give the maximum accuracy. So, we are going to provide an efficient result by comparing all the such algorithms in RStudio.


2020 ◽  
pp. 193-201 ◽  
Author(s):  
Hayder A. Alatabi ◽  
Ayad R. Abbas

Over the last period, social media achieved a widespread use worldwide where the statistics indicate that more than three billion people are on social media, leading to large quantities of data online. To analyze these large quantities of data, a special classification method known as sentiment analysis, is used. This paper presents a new sentiment analysis system based on machine learning techniques, which aims to create a process to extract the polarity from social media texts. By using machine learning techniques, sentiment analysis achieved a great success around the world. This paper investigates this topic and proposes a sentiment analysis system built on Bayesian Rough Decision Tree (BRDT) algorithm. The experimental results show the success of this system where the accuracy of the system is more than 95% on social media data.


2016 ◽  
Author(s):  
Philippe Desjardins-Proulx ◽  
Idaline Laigle ◽  
Timothée Poisot ◽  
Dominique Gravel

0AbstractSpecies interactions are a key component of ecosystems but we generally have an incomplete picture of who-eats-who in a given community. Different techniques have been devised to predict species interactions using theoretical models or abundances. Here, we explore the K nearest neighbour approach, with a special emphasis on recommendation, along with other machine learning techniques. Recommenders are algorithms developed for companies like Netflix to predict if a customer would like a product given the preferences of similar customers. These machine learning techniques are well-suited to study binary ecological interactions since they focus on positive-only data. We also explore how the K nearest neighbour approach can be used with both positive and negative information, in which case the goal of the algorithm is to fill missing entries from a matrix (imputation). By removing a prey from a predator, we find that recommenders can guess the missing prey around 50% of the times on the first try, with up to 881 possibilities. Traits do not improve significantly the results for the K nearest neighbour, although a simple test with a supervised learning approach (random forests) show we can predict interactions with high accuracy using only three traits per species. This result shows that binary interactions can be predicted without regard to the ecological community given only three variables: body mass and two variables for the species’ phylogeny. These techniques are complementary, as recommenders can predict interactions in the absence of traits, using only information about other species’ interactions, while supervised learning algorithms such as random forests base their predictions on traits only but do not exploit other species’ interactions. Further work should focus on developing custom similarity measures specialized to ecology to improve the KNN algorithms and using richer data to capture indirect relationships between species.


Author(s):  
Christos Floros ◽  
Panagiotis Ballas

Crises around the world reveal a generally unstable environment in the last decades within which banks and financial institutions operate. Risk is an inherent characteristic of financial institutions and is a multifaceted phenomenon. Everyday business practice involves decisions, which requires the use of information regarding various types of threats involved together with an evaluation of their impact on future performance, concluding to combinations of types of risks and projected returns for decision makers to choose from. Moreover, financial institutions process a massive amount of data, collected either internally or externally, in an effort to continuously analyse trends of the economy they operate in and decode global economic conditions. Even though research has been performed in the field of accounting and finance, the authors explore the application of machine learning techniques to facilitate decision making by top management of contemporary financial institutions improving the quality of their accounting disclosure.


Author(s):  
Pablo Díaz-Moreno ◽  
Juan José Carrasco ◽  
Emilio Soria-Olivas ◽  
José M. Martínez-Martínez ◽  
Pablo Escandell-Montero ◽  
...  

Neural Networks (NN) are one of the most used machine learning techniques in different areas of knowledge. This has led to the emergence of a large number of courses of Neural Networks around the world and in areas where the users of this technique do not have a lot of programming skills. Current software that implements these elements, such as Matlab®, has a number of important limitations in teaching field. In some cases, the implementation of a MLP requires a thorough knowledge of the software and of the instructions that train and validate these systems. In other cases, the architecture of the model is fixed and they do not allow an automatic sweep of the parameters that determine the architecture of the network. This chapter presents a teaching tool for the its use in courses about neural models that solves some of the above-mentioned limitations. This tool is based on Matlab® software.


2020 ◽  
Vol 9 (3) ◽  
pp. 445-456
Author(s):  
Deepika Upadhyay ◽  
Geetanjali Purswani ◽  
Pooja Jain

The rapidly rising rate of urbanization, which is closely linked to economic growth, has exposed the world to several challenges such as inequality, environmental degradation, traffic congestion, infrastructural concerns and social conflicts. Therefore, urban sustainability has emerged as one of the most debatable discussions across the world. The existing network of transportation can no longer keep up with the growing demand in metropolitan cities. Short distance travel has become an unresolved issue for daily commuters. The case presents how MMVs have emerged as an alternative mode of transport for resolving issues of daily commuters regarding the first-mile connectivity, last-mile connectivity and short distance travel to reach their final destination. MMVs are basically light-weight vehicles which occupy less space on road. These vehicles include bicycles, e-bikes, skateboards, hoverboards and other battery-operated vehicles. The case narrates the journey of Yulu, a dockless bike-sharing venture which promoted the concept of green consumerism among the daily commuters at affordable rates. The venture initially started in the IT city of Bangalore and later expanded its operations to other cities such as Pune, Navi Mumbai, Gurugram and Bhubaneswar. The speciality of this venture is that it offers a sustainable solution to ever-increasing problems of traffic congestion and aggravating air pollution issues in metropolitan cities. Dilemma: How to offer a sustainable solution to the ever-increasing problem of traffic congestion and aggravating air pollution due to rising vehicular traffic? How to make short distance travel affordable and more convenient for daily commuters? Theory: Three pillars of sustainable development. Type of Case: Problem solving applied case. Protagonist: Present. Discussion and Case Questions: What strategies should be employed by the start-up to make it a more popular form of commute? How can the increasing rate of damage to the vehicles be brought down? How does organization structure and cluster management practices of Yulu help it to become more sustainable? How can the regulatory bodies and government promote and adopt such start-ups in their urban planning projects?


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5213 ◽  
Author(s):  
Donato Impedovo ◽  
Fabrizio Balducci ◽  
Vincenzo Dentamaro ◽  
Giuseppe Pirlo

Automatic traffic flow classification is useful to reveal road congestions and accidents. Nowadays, roads and highways are equipped with a huge amount of surveillance cameras, which can be used for real-time vehicle identification, and thus providing traffic flow estimation. This research provides a comparative analysis of state-of-the-art object detectors, visual features, and classification models useful to implement traffic state estimations. More specifically, three different object detectors are compared to identify vehicles. Four machine learning techniques are successively employed to explore five visual features for classification aims. These classic machine learning approaches are compared with the deep learning techniques. This research demonstrates that, when methods and resources are properly implemented and tested, results are very encouraging for both methods, but the deep learning method is the most accurately performing one reaching an accuracy of 99.9% for binary traffic state classification and 98.6% for multiclass classification.


2018 ◽  
Author(s):  
Sandip S Panesar ◽  
Rhett N D’Souza ◽  
Fang-Cheng Yeh ◽  
Juan C Fernandez-Miranda

AbstractBackgroundMachine learning (ML) is the application of specialized algorithms to datasets for trend delineation, categorization or prediction. ML techniques have been traditionally applied to large, highly-dimensional databases. Gliomas are a heterogeneous group of primary brain tumors, traditionally graded using histopathological features. Recently the World Health Organization proposed a novel grading system for gliomas incorporating molecular characteristics. We aimed to study whether ML could achieve accurate prognostication of 2-year mortality in a small, highly-dimensional database of glioma patients.MethodsWe applied three machine learning techniques: artificial neural networks (ANN), decision trees (DT), support vector machine (SVM), and classical logistic regression (LR) to a dataset consisting of 76 glioma patients of all grades. We compared the effect of applying the algorithms to the raw database, versus a database where only statistically significant features were included into the algorithmic inputs (feature selection).ResultsRaw input consisted of 21 variables, and achieved performance of (accuracy/AUC): 70.7%/0.70 for ANN, 68%/0.72 for SVM, 66.7%/0.64 for LR and 65%/0.70 for DT. Feature selected input consisted of 14 variables and achieved performance of 73.4%/0.75 for ANN, 73.3%/0.74 for SVM, 69.3%/0.73 for LR and 65.2%/0.63 for DT.ConclusionsWe demonstrate that these techniques can also be applied to small, yet highly-dimensional datasets. Our ML techniques achieved reasonable performance compared to similar studies in the literature. Though local databases may be small versus larger cancer repositories, we demonstrate that ML techniques can still be applied to their analysis, though traditional statistical methods are of similar benefit.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1834
Author(s):  
Abdullah Aljumah

From the end of 2019, the world has been facing the threat of COVID-19. It is predicted that, before herd immunity is achieved globally via vaccination, people around the world will have to tackle the COVID-19 pandemic using precautionary steps. This paper suggests a COVID-19 identification and control system that operates in real-time. The proposed system utilizes the Internet of Things (IoT) platform to capture users’ time-sensitive symptom information to detect potential cases of coronaviruses early on, to track the clinical measures adopted by survivors, and to gather and examine appropriate data to verify the existence of the virus. There are five key components in the framework: symptom data collection and uploading (via communication technology), a quarantine/isolation center, an information processing core (using artificial intelligent techniques), cloud computing, and visualization to healthcare doctors. This research utilizes eight machine/deep learning techniques—Neural Network, Decision Table, Support Vector Machine (SVM), Naive Bayes, OneR, K-Nearest Neighbor (K-NN), Dense Neural Network (DNN), and the Long Short-Term Memory technique—to detect coronavirus cases from time-sensitive information. A simulation was performed to verify the eight algorithms, after selecting the relevant symptoms, on real-world COVID-19 data values. The results showed that five of these eight algorithms obtained an accuracy of over 90%. Conclusively, it is shown that real-world symptomatic information would enable these three algorithms to identify potential COVID-19 cases effectively with enhanced accuracy. Additionally, the framework presents responses to treatment for COVID-19 patients.


Sign in / Sign up

Export Citation Format

Share Document