Measurement of Cover Crop Evapotranspiration and Impacts on Water Management in Crop Production Systems

2012 ◽  
Author(s):  
Brett R Hankerson ◽  
Christopher H Hay ◽  
Jeppe Kjaersgaard
Agriculture ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 225 ◽  
Author(s):  
Samuel I. Haruna ◽  
Nsalambi V. Nkongolo

Cover cropping, tillage and crop rotation management can influence soil nutrient availability and crop yield through changes in soil physical, chemical and biological processes. The objective of this study was to evaluate the influence of three years of cover crop, tillage, and crop rotation on selected soil nutrients. Twenty-four plots each of corn (Zea mays) and soybean (Glycine max) were established on a 4.05 ha field and arranged in a three-factor factorial design. The three factors (treatments) were two methods of tillage (no-tillage (NT) vs. moldboard plow [conventional] tillage (CT)), two types of cover crop (no cover crop (NC) vs. cover crop (CC)) and four typess of rotation (continuous corn, continuous soybean, corn/soybean and soybean/corn). Soil samples were taken each year at four different depths in each plot; 0–10 cm, 10–20 cm, 20–40 cm and 40–60 cm, and analyzed for soil nutrients: calcium (Ca), magnesium (Mg), nitrogen (NO3 and NH4), potassium (K), phosphorus (P), sulfur (S), sodium (Na), iron (Fe), manganese (Mn) and copper (Cu). The results in the first year showed that CT increased NO3-N availability by 40% compared with NT. In the second year, NH4-N was 8% lower under CC compared with NC management. In the third year, P was 12% greater under CC management compared with NC management. Thus, CC can enhance crop production systems by increasing P availability and scavenging excess NH4-N from the soil, but longer-term studies are needed to evaluate long-term effects.


age ◽  
2021 ◽  
Vol 4 (3) ◽  
Author(s):  
Anna M. Johnson ◽  
Audrey V. Gamble ◽  
Kipling S. Balkcom ◽  
Noah R. Hull

2019 ◽  
Vol 33 (2) ◽  
pp. 312-320 ◽  
Author(s):  
Derek M. Whalen ◽  
Mandy D. Bish ◽  
Bryan G. Young ◽  
Aaron G. Hager ◽  
Shawn P. Conley ◽  
...  

AbstractIn recent years, the use of cover crops has increased in U.S. crop production systems. An important aspect of successful cover crop establishment is the preceding crop and herbicide program, because some herbicides have the potential to persist in the soil for several months. Few studies have been conducted to evaluate the sensitivity of cover crops to common residual herbicides used in soybean production. The same field experiment was conducted in 2016 in Arkansas, Illinois, Indiana, Missouri, Tennessee, and Wisconsin, and repeated in Arkansas, Illinois, Indiana, Mississippi, and Missouri in 2017 to evaluate the potential of residual soybean herbicides to carryover and reduce cover crop establishment. Herbicides applied during the soybean growing season included acetochlor; acetochlor plus fomesafen; chlorimuron plus thifensulfuron; fomesafen; fomesafen plus S-metolachlor followed by acetochlor; imazethapyr; pyroxasulfone; S-metolachlor; S-metolachlor plus fomesafen; sulfentrazone plus S-metolachlor; sulfentrazone plus S-metolachlor followed by fomesafen plus S-metolachlor; and sulfentrazone plus S-metolachlor followed by fomesafen plus S-metolachlor followed by acetochlor. Across all herbicide treatments, the sensitivity of cover crops to herbicide residues in the fall, from greatest to least, was forage radish = turnip > annual ryegrass = winter oat = triticale > cereal rye = Austrian winter pea = hairy vetch = wheat > crimson clover. Fomesafen (applied 21 and 42 days after planting [(DAP]); chlorimuron plus thifensulfuron and pyroxasulfone applied 42 DAP; sulfentrazone plus S-metolachlor followed by fomesafen plus S-metolachlor; and sulfentrazone plus S-metolachlor followed by fomesafen plus S-metolachlor followed by acetochlor caused the highest visual ground cover reduction to cover crop species at the fall rating. Study results indicate cover crops are most at risk when following herbicide applications in soybean containing certain active ingredients such as fomesafen, but overall there is a fairly low risk of cover crop injury from residual soybean herbicides applied in the previous soybean crop.


2019 ◽  
Vol 34 (1) ◽  
pp. 1-10
Author(s):  
Derek M. Whalen ◽  
Mandy D. Bish ◽  
Bryan G. Young ◽  
Shawn P. Conley ◽  
Daniel B. Reynolds ◽  
...  

AbstractThe use of cover crops in soybean production systems has increased in recent years. There are many questions surrounding cover crops—specifically about benefits to crop production and most effective herbicides for spring termination. No studies evaluating cover crop termination have been conducted across a wide geographic area, to our knowledge. Therefore, field experiments were conducted in 2016 and 2017 in Arkansas, Indiana, Mississippi, Missouri, and Wisconsin for spring termination of regionally specific cover crops. Glyphosate-, glufosinate-, and paraquat-containing treatments were applied between April 15 and April 29 in 2016 and April 10 and April 20 in 2017. Visible control of cover crops was determined 28 days after treatment. Glyphosate-containing herbicide treatments were more effective than paraquat- and glufosinate-containing treatments, providing 71% to 97% control across all site years. Specifically, glyphosate at 1.12 kg ha−1 applied alone or with 2,4-D at 0.56 kg ha−1, saflufenacil at 0.025 kg ha−1, or clethodim at 0.56 kg ha−1 provided the most effective control on all grass cover crop species. Glyphosate-, paraquat-, or glufosinate-containing treatments were generally most effective on broadleaf cover crop species when applied with 2,4-D or dicamba. Results from this research indicate that proper herbicide selection is crucial to successfully terminate cover crops in the spring.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 494e-494
Author(s):  
J.P. Mitchell ◽  
T.S. Prather ◽  
K.J. Hembree ◽  
P.B. Goodell ◽  
D.M. May ◽  
...  

There is currently considerable interest in the use of cover crops to improve the productivity and sustainability of agroecosystems in California. Adoption of cover crops into San Joaquin Valley row cropping systems has been slow, however, largely because growth characteristics of potentially suitable cover crop species and mixtures have not been identified for the tight windows of opportunity that exist within the region's intensive rotations, and because of uncertainy about the amount of water required to grow a cover crop. In 1995–96 and 1997–98, we screened 15 potential late-summer and winter cover crop species and mixtures planted monthly from 1 Aug. through 1 Nov. and harvested at 30-day intervals through March. In 1995–96, Sorghum-sudan produced 36,543 lb dry matter/acre and was the highest-producing late-summer species in a December-harvested August planting. Triticale and Merced rye were highest-producing winter species, yielding 19,277 and 10,155 lb dry weight/acre, respectively, during the 5-month period from October to March.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1152
Author(s):  
Rebekah Waller ◽  
Murat Kacira ◽  
Esther Magadley ◽  
Meir Teitel ◽  
Ibrahim Yehia

Recognizing the growing interest in the application of organic photovoltaics (OPVs) with greenhouse crop production systems, in this study we used flexible, roll-to-roll printed, semi-transparent OPV arrays as a roof shade for a greenhouse hydroponic tomato production system during a spring and summer production season in the arid southwestern U.S. The wavelength-selective OPV arrays were installed in a contiguous area on a section of the greenhouse roof, decreasing the transmittance of all solar radiation wavelengths and photosynthetically active radiation (PAR) wavelengths (400–700 nm) to the OPV-shaded area by approximately 40% and 37%, respectively. Microclimate conditions and tomato crop growth and yield parameters were measured in both the OPV-shaded (‘OPV’) and non-OPV-shaded (‘Control’) sections of the greenhouse. The OPV shade stabilized the canopy temperature during midday periods with the highest solar radiation intensities, performing the function of a conventional shading method. Although delayed fruit development and ripening in the OPV section resulted in lower total yields compared to the Control section (24.6 kg m−2 and 27.7 kg m−2, respectively), after the fourth (of 10 total) harvests, the average weekly yield, fruit number, and fruit mass were not significantly different between the treatment (OPV-shaded) and control group. Light use efficiency (LUE), defined as the ratio of total fruit yield to accumulated PAR received by the plant canopy, was nearly twice as high as the Control section, with 21.4 g of fruit per mole of PAR for plants in the OPV-covered section compared to 10.1 g in the Control section. Overall, this study demonstrated that the use of semi-transparent OPVs as a seasonal shade element for greenhouse production in a high-light region is feasible. However, a higher transmission of PAR and greater OPV device efficiency and durability could make OPV shades more economically viable, providing a desirable solution for co-located greenhouse crop production and renewable energy generation in hot and high-light intensity regions.


Author(s):  
Daniel P. Roberts ◽  
Nicholas M. Short ◽  
James Sill ◽  
Dilip K. Lakshman ◽  
Xiaojia Hu ◽  
...  

AbstractThe agricultural community is confronted with dual challenges; increasing production of nutritionally dense food and decreasing the impacts of these crop production systems on the land, water, and climate. Control of plant pathogens will figure prominently in meeting these challenges as plant diseases cause significant yield and economic losses to crops responsible for feeding a large portion of the world population. New approaches and technologies to enhance sustainability of crop production systems and, importantly, plant disease control need to be developed and adopted. By leveraging advanced geoinformatic techniques, advances in computing and sensing infrastructure (e.g., cloud-based, big data-driven applications) will aid in the monitoring and management of pesticides and biologicals, such as cover crops and beneficial microbes, to reduce the impact of plant disease control and cropping systems on the environment. This includes geospatial tools being developed to aid the farmer in managing cropping system and disease management strategies that are more sustainable but increasingly complex. Geoinformatics and cloud-based, big data-driven applications are also being enlisted to speed up crop germplasm improvement; crop germplasm that has enhanced tolerance to pathogens and abiotic stress and is in tune with different cropping systems and environmental conditions is needed. Finally, advanced geoinformatic techniques and advances in computing infrastructure allow a more collaborative framework amongst scientists, policymakers, and the agricultural community to speed the development, transfer, and adoption of these sustainable technologies.


2021 ◽  
pp. 1-25
Author(s):  
Mandy Bish ◽  
Brian Dintelmann ◽  
Eric Oseland ◽  
Jacob Vaughn ◽  
Kevin Bradley

Abstract The evolution of herbicide-resistant weeds has resulted in the necessity to integrate non-chemical control methods with chemicals for effective management in crop production systems. In soybean, control of the pigweed species, particularly herbicide-resistant waterhemp and Palmer amaranth, have become predominant concerns. Cereal rye planted as a winter cover crop can effectively suppress early-season weed emergence in soybean, including waterhemp, when planted at a rate of 123 kg ha−1. The objectives of this study were to determine the effects of different cereal rye seeding rates (0, 34, 56, 79, 110, and 123 kg ha−1) on early-season waterhemp suppression and soybean growth and yield. Soybean was planted into fall-seeded cereal rye, which was terminated within four days of soybean planting. The experiment was conducted over the 2018, 2019, and 2020 growing seasons in Columbia, Missouri. Effects of cereal rye on early-season waterhemp suppression varied by year and were most consistent at 56 kg ha−1 or higher seeding rates. Linear regression analysis of cereal rye biomass, height, or stand at soybean planting showed inverse relationships with waterhemp emergence. No adverse effects to soybean growth or yield were observed at any of the cereal rye seeding rates relative to plots that lacked cereal rye cover. Result differences among the years suggest that the successfulness of cereal rye on suppression of early-season waterhemp emergence is likely influenced by the amount of waterhemp seed present in the soil seed bank.


Sign in / Sign up

Export Citation Format

Share Document