scholarly journals Genetic diversity of eucalypts for germplasm conservation in Forest Area with the Special Purpose of Mount Bromo, Karanganyar, Indonesia

2021 ◽  
Vol 22 (10) ◽  
Author(s):  
Fatimah FATIMAH ◽  
Rahayu Rahayu ◽  
Jamal Wiwoho ◽  
Sunny Ummul Firdaus ◽  
Pujiyono Pujiyono ◽  
...  

Abstract. Rahayu, Fatimah, Wiwoho J, Firdaus SU, Pujiyono, Marimin, Arianto DP, Pramono A. 2021. Genetic diversity of eucalypts for germplasm conservation in Forest Area with the Special Purpose of Mount Bromo, Karanganyar, Indonesia. Biodiversitas 22: 4223-4235. As a repository of a gene pool, eucalypts germplasm enriches biodiversity, maintains ecosystem sustainability, and aids in conservation. Therefore, this study aims to analyze the genetic diversity of eucalypts (Corymbia and Eucalyptus) for the development of germplasm conservation in Forest Area with the Special Purpose (KHDTK) Bromo Forest, Karanganyar, Indonesia. In this study, 14 simple sequence repeat (SSR) markers were used to assess the genetic diversity among 20 accessions (Corymbia and 5 Eucalyptus species) from Central and West Java. Subsequently, the genetic parameters were measured and a phylogenetic tree was constructed. The result showed that the SSR markers have high variability, although they belong to different genera. Furthermore, the genetic diversity showed 49 alleles with an average of 3 alleles per locus, while the polymorphism information content (PIC) values were 0.55. There were 4 SSR markers (EMBRA13, EMBRA8, EMCRC11, and EMBRA2) with high PIC value, while the gene diversity (He) of Corymbia and 5 Eucalyptus showed a low level of genetic diversity. The genetic relationship and population structure were divided into genera Corymbia and Eucalyptus. For further application, the eucalypt cultivated in the KHDTK Bromo Forest can contribute as a reference set and 14 SSR markers as a potential marker in combination with morphological characterization to generate a database for germplasm management and conservation.

2020 ◽  
Vol 17 (4) ◽  
pp. 156
Author(s):  
Surti Kurniasih ◽  
Rubiyo Rubiyo ◽  
Asep Setiawan ◽  
Agus Purwantara ◽  
Sudarsono Sudarsono

<p>Microsatellite or simple sequence repeat (SSR) markers have proven to be an excellent tool for cultivar identification, pedigree analysis, and genetic distance evaluations among organisms. The objectives of this research were to characterize cacao collection of Indonesian Coffee and Cacao Research Institute (ICCRI) and to analyze their genetic diversity using SSR markers. In this research, 39 SSR primer pairs were used to amplify genomic DNA of 29 cacao clones. Amplified SSR fragments for each primer pair were scored as individual band and used to determine genetic distance among evaluated cacao clones. Results of the experiment indicated that all SSR primer pairs evaluated were able to produce SSR markers for 29 cacao clones. The results also indicated that 34 out of 39 microsatellite loci evaluated were polymorphic, while 5 others were monomorphic. The total number of observed alleles among 29 clones was 132. Number of alleles per locus ranged from 4-8, with an average of 5.5 alelles per locus. Results of data analysis indicated that the PIC value was 0.665, the observed heterozigosity (Ho) was 0.651, and the gene diversity (He) was 0.720. The PIC, Ho, and He values were considered high. Genetic distances were evaluated using NTSys version 2.1 and dendrogram was constructed. Results of analysis indicated that 12 cacao clones evaluated were clustered in the first group with diversity coefficient of &lt; 3.75. Nine cacao clones were in the second group but with the same value of diversity coefficient (&lt;7.50). The rest of the cacao clones were in the third group with diversity coefficient of&gt;7.50. Based on those finding, all SSR primer pairs evaluated could be used to analyze cacao genome and be useful for genetic diversity analysis of cacao germplasm. The SSR marker analysis in ICCRI cacao collections resulted in high PIC, high observed heterozygosity, and high genetic diversity.</p><p>Key words: Theobroma cacao L, microsatelite, molecular marker, genetic diversity, heterozygosity</p><p> </p><p><strong>Abstrak</strong></p><p>Marka mikrosatelit atau sekuens sederhana berulang (simple sequence repeat = SSR) terbukti merupakan alat yang bagus untuk identifikasi kultivar, analisis pedigree, dan evaluasi jarak genetik berbagai organisme. Penelitian ini bertujuan untuk:1) karakterisasi kakao koleksi Pusat penelitian Kopi dan Kakao Indonesia menggunakan marka SSR dan 2) analisis keragaman genetik klon-klon kakao koleksi dengan menggunakan marka SSR. Dalam penelitian ini, 39 pasangan primer SSR telah digunakan untuk amplifikasi DNA genomik dari 29 klon kakao. Skoring pita SSR hasil amplifikasi menggunakan masing-masing pasangan primer dilakukan secara terpisah dan digunakan untuk menentukan jarak genetik di antara klon kakao yang dievaluasi. Hasil percobaan menunjukkan bahwa semua pasangan primer SSR yang digunakan mampu menghasilkan pita DNA hasil amplifikasi (marka SSR) untuk 29 klon kakao yang diuji. Hasil penelitian juga menunjukkan bahwa 34 dari 39 lokus SSR yang dianalisis bersifat polimorfik sedangkan lima primer yang lain bersifat monomorfik. Dari 29 klon kakao yang dievaluasi, telah berhasil diamplifikasi sebanyak 132 alel, dengan kisaran antara 4-8 alel/lokus. Rataan jumlah alel per lokus sebanyak 5,50. Hasil analisis data yang dilakukan juga menunjukkan nilai PIC untuk marka SSR yang digunakan sebesar 0,665. Untuk populasi klon kakao yang dievaluasi, diperoleh nilai rataan heterosigositas pengamatan (Ho) sebesar 0,651 dan rataan diversitas gen (He) sebesar 0,720. Nilai PIC Ho dan He yang didapat tergolong tinggi. Berdasarkan analisis keragaman dengan menggunakan program NTSys, diperoleh hasil 12 klon kakao berada dalam grup pertama (koefisien keragaman&lt;3,75) dan9 klon berada dalam grup kedua, dengan koefisien keragaman &lt; 7,50. Sedangkan klon-klon lainnya mempunyai koefisien keragaman &gt; 7,50. Berdasarkan hasil penelitian dan analisis data disimpulkan bahwa marka SSR dapat digunakan untuk menganalisis keragaman genetik plasma nutfah kakao. Tingkat polimorfisme yang dihasilkan marka SSR relatif tinggi. Tingkat heterosigositas plasma nutfah kakao koleksi Puslit Kopi dan Kakao Indonesiarelatif tinggi, dan keragaman genetiknyacukup tinggi.</p><p>Kata kunci : Theobroma cacao L, mikrosatelit, marka molekuler, keragaman genetik, heterosigositas</p>


HortScience ◽  
2018 ◽  
Vol 53 (9) ◽  
pp. 1266-1270 ◽  
Author(s):  
Nader R. Abdelsalam ◽  
Hayssam M. Ali ◽  
Mohamed Z.M. Salem ◽  
Elsayed G. Ibrahem ◽  
Mohamed S. Elshikh

Mango (Mangifera indica L.) is a fruit crops belong to the family Anacardiaceae and is the oldest cultivated tree worldwide. Cultivars maintained in Egypt have not been investigated previously. Mango was first brought to Egypt from South Asia. Morphological and molecular techniques were used to identify the genetic diversity within 28 mango cultivars. SSR and EST-SSR were used for optimizing germplasm management of mango cultivars. Significant variations were observed in morphological characteristics and genetic polymorphism, as they ranged from 0.71% to 100%. High diversity was confirmed as a pattern of morphological and genotypes data. Data from the present study may be used to calculate the mango relationship and diversity currently grown in Egypt.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 1019 ◽  
Author(s):  
Zhong ◽  
Yang ◽  
Li ◽  
Zhang ◽  
Liu ◽  
...  

Cinnamomum camphora is a valuable broad-leaf tree indigenous to South China and East Asia and has been widely cultivated and utilized by humans since ancient times. However, owing to its overutilization for essential oil extraction, the Transplanting Big Trees into Cities Program, and over deforestation to make furniture, its wild populations have been detrimentally affected and are declining rapidly. In the present study, the genetic diversity and population structure of 180 trees sampled from 41 populations in South China were investigated with 22 expressed sequence tag-simple sequence repeat (EST-SSR) markers. In total, 61 alleles were harbored across 180 individuals, and medium genetic diversity level was inferred from the observed heterozygosity (Ho), expected heterozygosity (He), and Nei’ gene diversity (GD), which were 0.45, 0.44, and 0.44, respectively. Among the 41 wild populations, C. camphora had an average of 44 alleles, 2.02 effective alleles, and He ranging from 0.30 (SC) to 0.61 (HK). Analysis of molecular variance (AMOVA) showed that 17% of the variation among populations and the average pairwise genetic differentiation coefficient (FST) between populations was 0.162, indicating relatively low genetic population differentiations. Structure analysis suggested two groups for the 180 individuals, which was consistent with the principal coordinate analysis (PCoA) and unweighted pair-group method with arithmetic means (UPGMA). Populations grouped to cluster I were nearly all distributed in Jiangxi Province (except population XS in Zhejiang Province), and cluster II mainly comprised populations from other regions, indicating a significant geographical distribution. Moreover, the Mantel test showed that this geographical distance was significantly correlated with genetic distance. The findings of this research will assist in future C. camphora conservation management and breeding programs.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Yuejin Zhang ◽  
Yuanyuan Chen ◽  
Ruihong Wang ◽  
Ailin Zeng ◽  
Michael K. Deyholos ◽  
...  

A large scale of EST sequences of Polyporales was screened in this investigation in order to identify EST-SSR markers for various applications. The distribution of EST sequences and SSRs in five families of Polyporales was analyzed, respectively. Mononucleotide was the most abundant type, followed by trinucleotide. Among five families, Ganodermataceae occupied the most SSR markers, followed by Coriolaceae. Functional prediction of SSR marker-containing EST sequences inGanoderma lucidumobtained three main groups, namely, cellular component, biological process, and molecular function. Thirty EST-SSR primers were designed to evaluate the genetic diversity of 13 naturalPolyporus umbellatusaccessions. Twenty one EST-SSRs were polymorphic with average PIC value of 0.33 and transferability rate of 71%. These 13P.umbellatusaccessions showed relatively high genetic diversity. The expected heterozygosity, Nei’s gene diversity, and Shannon information index were 0.41, 0.39, and 0.57, respectively. Both UPGMA dendrogram and principal coordinate analysis (PCA) showed the same cluster result that divided the 13 accessions into three or four groups.


2005 ◽  
Vol 56 (7) ◽  
pp. 691 ◽  
Author(s):  
B. J. Stodart ◽  
M. Mackay ◽  
H. Raman

A set of 44 bread wheat landraces was used to determine the efficacy of 16 amplifed fragment length polymorphism (AFLP) primers and 63 wheat simple sequence repeat (SSR) markers in identifying polymorphisms between accessions. The SSR markers detected approximately 10 alleles per locus with a mean gene diversity (Hz) of 0.63, whereas AFLP primers identified approximately 147 fragments per primer with a mean gene diversity of 0.25. A set of 54 SSR markers and 11 AFLP primers was identified as highly polymorphic (polymorphic information content (PIC) ≥ 0.5 and 0.3 for SSR and AFLP, respectively), and suitable for molecular characterisation of germplasm. Principle coordinate analysis suggested that the AFLP and SSR loci could be used to discriminate among accessions collected from North Africa and southern Europe from those collected from the Middle East. Both marker types indicate that accessions from North Africa and southern Europe, the Middle East, and southern and eastern Asia are genetically diverse. The results indicate the usefulness of the molecular markers to assess genetic diversity present within germplasm collections.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haftom Brhane ◽  
Teklehaimanot Haileselassie ◽  
Kassahun Tesfaye ◽  
Cecilia Hammenhag ◽  
Rodomiro Ortiz ◽  
...  

Finger millet (Eleusine coracana (L.) Geartn.) is a self-pollinating amphidiploid crop cultivated with minimal input for food and feed, as well as a source of income for small-scale farmers. To efficiently assess its genetic diversity for conservation and use in breeding programs, polymorphic DNA markers that represent its complex tetraploid genome have to be developed and used. In this study, 13 new expressed sequence tag-derived simple sequence repeat (EST-SSR) markers were developed based on publicly available finger millet ESTs. Using 10 polymorphic SSR markers (3 genomic and 7 novel EST-derived), the genetic diversity of 55 landrace accessions and 5 cultivars of finger millet representing its major growing areas in Ethiopia was assessed. In total, 26 alleles were detected across the 10 loci, and the average observed number of alleles per locus was 5.6. The polymorphic information content (PIC) of the loci ranged from 0.045 (Elco-48) to 0.71 (UGEP-66). The level of genetic diversity did not differ much between the accessions with the mean gene diversity estimates ranging only from 0.44 (accession 216054) to 0.68 (accession 237443). Similarly, a narrow range of variation was recorded at the level of regional states ranging from 0.54 (Oromia) to 0.59 (Amhara and Tigray). Interestingly, the average gene diversity of the landrace accessions (0.57) was similar to that of the cultivars (0.58). The analysis of molecular variance (AMOVA) revealed significant genetic variation both within and among accessions. The variation among the accessions accounted for 18.8% of the total variation (FST = 0.19; P &lt; 0.001). Similarly, significant genetic variation was obtained among the geographic regions, accounting for 6.9% of the total variation (P &lt; 0.001). The results of the cluster, principal coordinate, and population structure analyses suggest a poor correlation between the genetic makeups of finger millet landrace populations and their geographic regions of origin, which in turn suggests strong gene flow between populations within and across geographic regions. This study contributed novel EST-SSR markers for their various applications, and those that were monomorphic should be tested in more diverse finger millet genetic resources.


2021 ◽  
Author(s):  
Tanzeem Fatima ◽  
Ashutosh Srivastava ◽  
Vageeshbabu S Hanur ◽  
M. Srinivasa Rao

Sandalwood (Santalum album L.) is highly valued aromatic tropical tree. It is known for its high quality heartwood and oil. In this study 39 genic and genomic SSR markers were used to analyze the genetic diversity and population structure of 177 S. album accessions from 14 populations of three states in India. High genetic diversity was observed in terms of number of alleles 127 expected heterozygosity (He) ranged from 0.63-0.87 and the average PIC was 0.85. The selected population had relatively high genetic diversity with Shannons information index (I) >1.0. 0.02 mean coefficient of genetic differentiation (FST) and 10.55 gene flow were observed. AMOVA revealed that 92% of the variation observed within individuals. Based on cluster and Structure result individuals were not clustered as per their geographical origin. Furthermore the clusters were clearly distinguished by principal component analysis analysis and the result revealed that PC1 reflected the moderate contribution in genetic variation (6%) followed by PC2 (5.5%). From this study, high genetic diversity and genetic differentiation was found in S. album populations. The genetic diversity information of S. album populations can be used for selection of superior genotypes and germplasm conservation to promote the tree improvement of S. album populations.


Author(s):  
Maizura Abu Sin ◽  
Ghizan Saleh ◽  
Nur Ashikin Psyquay Abdullah ◽  
Pedram Kashiani

Genetic diversity and phenotypic superiority are important attributes of parental inbred lines for use in hybrid breeding programs. In this study, genetic diversity among 30 maize (Zea mays L.) inbred lines comprising of 28 introductions from the International Maize and Wheat Improvement Center (CIMMYT), one from Indonesia and a locally developed, were evaluated using 100 simple sequence repeat (SSR) markers, as early screening for potential parents of hybrid varieties. All markers were polymorphic, with a total of 550 unique alleles detected on the 100 loci from the 30 inbred lines. Allelic richness ranged from 2 to 13 per locus, with an average of 5.50 alleles (na). Number of effective alleles (ne) was 3.75 per locus, indicating their high effectiveness in revealing diversity among inbred lines. Average polymorphic information content (PIC) was 0.624, with values ranging from 0.178 to 0.874, indicating high informativeness of the markers. High gene diversity was observed on Chromosomes 8 and 4, with high number of effective alleles, indicating their potential usefulness for QTL analysis. The UPGMA dendrogram constructed identified four heterotic groups within a similarity index of 0.350, indicating that these markers were able to group the inbred lines. The three-dimensional PCoA plot also supports the dendrogram grouping, indicating that these two methods complement each other. Inbred lines in different heterotic groups have originated from different backgrounds and population sources. Information on genetic diversity among the maize inbred lines are useful in developing strategies exploiting heterosis in breeding programs


2019 ◽  
Author(s):  
Alemneh Mideksa Egu ◽  
Kifle Dagne ◽  
Kassahun Tesfaye ◽  
Xuebo Hu

Abstract BackgroundVernonia (Vernonia galamensis) is a potential novel industrial crop due to high demand for its natural epoxidised oil, which can be used for the manufacturing of oleochemicals such as paints, plastic formulations (polyvinyl chloride), and pharmaceutical products. This study is initiated for the systematic and intensive genetic diversity assessment of V. galamensis accessions by SSR molecular markers to minimize the existing research gaps, provide a clue for germplasm conservation and further research. ResultsTwenty SSR markers were used for genetic diversity analyses of 150 individual V. galamensis accessions representing 10 populations, from which a total of 79 bands were identified across the entire loci. All the loci used showed high polymorphism that ranged from 0.50 to 0.96, while the mean observed heterozygosity (Ho) was 0.15 across all the 20 markers evaluated. The molecular variance analysis (AMOVA) showed significant variations despite low differentiation among populations which accounted for only 11% of the total variations. Populations clustering showed that the dendrogram and principal coordinate’s analysis roughly classified the 150 accessions into four groups. However, the Bayesian model-based clustering (STRUCTURE) grouped into 6 (K = 6) major gene pools. These analyses showed accessions collected from the same region of origin did not often grouped entirely together within a given major groups. ConclusionsThe result suggested that the markers applied to ten populations, in which East Showa and East Harerghe revealed higher genetic diversity, signaled that these areas are the hotspots for in-situ conservation of V. galamensis. In addition, the values of SSR markers such as heterozygosity, Shannon‘s index, polymorphic information content, and population clusters are important baseline information for future V. galamensis cultivation, breeding and genetic resource conservation endeavors in Ethiopia.


Sign in / Sign up

Export Citation Format

Share Document