scholarly journals Genetic control of fruit shelf life and yield in crossbreeding of Sletr1-2 mutant with Indonesian tropical tomatoes

2021 ◽  
Vol 22 (10) ◽  
Author(s):  
Gungun Wiguna ◽  
Farida Damayanti ◽  
Syariful Mubarok ◽  
Hiroshi Ezura ◽  
Anas ANAS

Postharvest losses are a significant concern for tomato breeding associated with their short fruit shelf life. Sletr1-2 is a new ethylene receptor mutant that has a prominent character in a prolonged fruit shelf life. This research aimed to estimate the combining ability of Sletr1-2 mutant and determine the selection method for future breeding associated with the fruit shelf-life and yield. Four lines of tropical tomato, i.e., 'Intan,' 'Mirah,' 'Ratna' and 'Mutiara,' were crossed with the wild type Micro-Tom (WT-MT) and Sletr1-2 mutant tomato using a line x tester mating design. A randomized complete block design with four replications was used to evaluate twelve F1 and their parents. The study revealed significant differences in the GCA of the line and tester but not for SCA. The lines and testers contributed more to total variance than their interaction. 'Intan' and Sletr1-2 mutants had the greatest fruit shelf-life combiners, with additive gene action being the most prevalent. Simple phenotypic selection or pure line selection from selected crosses in advanced generations would be preferable. 'Mutiara' was the best combiner for yield and plant growth, with non-additive gene action was the most common. The breeding strategy that considered dominance, overdominance, and epistasis was preferred.

2009 ◽  
Vol 57 (4) ◽  
pp. 417-423 ◽  
Author(s):  
S. Sharma ◽  
H. Chaudhary

The success of winter × spring wheat hybridization programmes depends upon the ability of the genotypes of these two physiologically distinct ecotypes to combine well with each other. Hence the present investigation was undertaken to study the combining ability and nature of gene action for various morpho-physiological and yield-contributing traits in crosses involving winter and spring wheat genotypes. Five elite and diverse genotypes each of winter and spring wheat ecotypes and their F 1 (spring × spring, winter × winter and winter × spring) hybrids, generated in a diallel mating design excluding reciprocals, were evaluated in a random block design with three replications. Considerable variability was observed among the spring and winter wheat genotypes for all the traits under study. Furthermore, these traits were highly influenced by the winter and spring wheat genetic backgrounds, resulting in significant differences between the spring × spring, winter × winter and winter × spring wheat hybrids for some of the traits. The winter × spring wheat hybrids were observed to be the best with respect to yieldcontributing traits. On the basis of GCA effects, the spring wheat parents HPW 42, HPW 89, HW 3024, PW 552 and UP 2418 and the winter wheat parents Saptdhara, VWFW 452, W 10 and WW 24 were found to be good combiners for the majority of traits. These spring and winter wheat parents could be effectively utilized in future hybridization programmes for wheat improvement. Superior hybrid combinations for one or more traits were identified, all of which involved at least one good general combiner for one or more traits in their parentage, and can thus be exploited in successive generations to develop potential recombinants through various breeding strategies. Genetic studies revealed the preponderance of additive gene action for days to flowering, days to maturity and harvest index, and non-additive gene action for the remaining six traits.


2017 ◽  
Vol 9 (2) ◽  
pp. 183-190 ◽  
Author(s):  
Suprapto Suprapto ◽  
Narimah Md Kairudin

Information on genetic variation, heritability, gene action and genetic advance were important in the development of soybean varieties adapted on Ultisol. The objective of this experiment was to estimate genetic variation, hertability, gene action and genetic advance from the populaton used in breeding program. Six genotypes, i.e Dempo, Cikuray, Davros, Orba, Sindoro and Wilis were intercrossed using diallel Griffings’ Method 2 Model 1 (1956). These six genotypes and 15 F1  hybrids were planted on Ultisol using randomized complete block design with three replications located in Medan Baru village, Bengkulu city in 1999. The results of this experiment revealed that all traits showed low to high genetic variation, high broadsense heritability, low to high narrowsense heritability and genetic advance. Date of flowering and root length were fully controlled by additive gene action, however harvest index was fully controlled by   negative dominant gene action and epistasis. Other traits were controlled by positive and negative partially dominant, and positive overdominant  genes. 


Agronomy ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 15 ◽  
Author(s):  
Adama Zongo ◽  
Abdourasmane K. Konate ◽  
Kadidia Koïta ◽  
Mahamadou Sawadogo ◽  
Philippe Sankara ◽  
...  

Early leaf spot (ELS) is one of the major biotic constraints of groundnut production in West and Central Africa. A study using 6 × 6 F2 full diallel populations from six parents (NAMA, B188, PC79-79, QH243C, TS32-1, and CN94C) was conducted to assess the mode of inheritance of ELS resistance traits. The F2 and parents were grown in a randomized complete block design with three replications. Data was collected on ELS disease severity, and an area under disease progress curve (AUDPC) was estimated. The results revealed that additive and non-additive gene actions were involved in the inheritance of the ELS resistance traits, but additive gene action was predominant. Significant reciprocal cross effect was observed, suggesting cytoplasmic effect on ELS resistance. Graphical analysis also revealed the predominance of additive gene action for ELS resistance. The results suggest that early generation selection should be effective for ELS resistance. Looking at the distribution of array points along with the regression line, parental lines NAMA, PC79-79, and B188 would be suitable as good donors in an ELS disease resistance breeding program.


2014 ◽  
Vol 369 (1642) ◽  
pp. 20130357 ◽  
Author(s):  
Laurent Lehmann ◽  
François Rousset

We survey the population genetic basis of social evolution, using a logically consistent set of arguments to cover a wide range of biological scenarios. We start by reconsidering Hamilton's (Hamilton 1964 J. Theoret. Biol. 7 , 1–16 ( doi:10.1016/0022-5193(64)90038-4 )) results for selection on a social trait under the assumptions of additive gene action, weak selection and constant environment and demography. This yields a prediction for the direction of allele frequency change in terms of phenotypic costs and benefits and genealogical concepts of relatedness, which holds for any frequency of the trait in the population, and provides the foundation for further developments and extensions. We then allow for any type of gene interaction within and between individuals, strong selection and fluctuating environments and demography, which may depend on the evolving trait itself. We reach three conclusions pertaining to selection on social behaviours under broad conditions. (i) Selection can be understood by focusing on a one-generation change in mean allele frequency, a computation which underpins the utility of reproductive value weights; (ii) in large populations under the assumptions of additive gene action and weak selection, this change is of constant sign for any allele frequency and is predicted by a phenotypic selection gradient; (iii) under the assumptions of trait substitution sequences, such phenotypic selection gradients suffice to characterize long-term multi-dimensional stochastic evolution, with almost no knowledge about the genetic details underlying the coevolving traits. Having such simple results about the effect of selection regardless of population structure and type of social interactions can help to delineate the common features of distinct biological processes. Finally, we clarify some persistent divergences within social evolution theory, with respect to exactness, synergies, maximization, dynamic sufficiency and the role of genetic arguments.


2021 ◽  
Author(s):  
pavan MP ◽  
Gangaprasad S ◽  
Dushyanthakumar B M ◽  
Nagrajappa Adivappar

Abstract Improving tomatoes keeping quality is crucial for reducing post-harvest losses. Knowledge on heterosis, and combining ability is pre requisite for breeding high yielding and good shelf life heterotic hybrids. An investigation was undertaken with each of 3 lines, testers, and 9 hybrids to identify desirable parents and crosses for 20 fruit biochemical, morpho-physiological, and yield traits and to elucidate nature of gene action for shelf life and its contributing traits through Line × Tester analysis. The lines contributed to most of hybrids variability than testers and fruit quality traits had higher degree of SCA variance as compared to GCA variance. pH, ascorbic acid, fruit firmness, and plant height governed by additive gene action. Lycopene, titratable acidity, TSS, calcium, magnesium, pericarp thickness, pulp content, locule number, fruit length, diameter, weight, shelf life, number of branches, number of clusters, number of fruit/cluster, and yield/plant were under the control of non-additive gene action. All the lines and Arka Saurabh were best general combiners and IIHR 2349 × Arka Vikas, IIHR 2349 × Arka Saurabh, IIHR 2358 × Arka Ahuti and IIHR 2357 × Arka Ahuti were the best specific combiner in producing heterotic hybrids. IIHR 2349 × Arka Vikas and IIHR 2349 × Arka Saurabh were promising hybrids for high yield and shelf life. The crosses involved both parents with high, one parent with high and other with low and both parents with low good overall general combining ability status respectively indicated the additive, non-additive and epistatic gene action in fruit quality and yield traits inheritance.


2020 ◽  
Vol 23 (1) ◽  
pp. 56-59
Author(s):  
Muyideen Oluseyi Olayiwola ◽  
Deborah Doyinsola Olaniran ◽  
Adesola Lateef Nassir ◽  
Omolayo Johnson Ariyo

AbstractA study was carried out at the Federal University of Agriculture Abeokuta, Nigeria to determine the gene action underlying the inheritance of important agronomic traits as well as the general combining ability (GCA) and specific combining ability (SCA) of the parents and hybrids, respectively. Ten hybrids were developed by crossing five lines to two testers. The hybrids and parents were evaluated on the field in a randomised complete block design replicated three times, and data were collected on days to 50% flowering, number of branches, stem diameter, plant height, pod length, pod width, pod weight, number of pods and pod yield. The data were subjected to line by tester analysis and results showed substantial variability among the genotypes for some of the characters measured. Days to 50% flowering, number of pods and pod yield were largely under additive gene action while non-additive gene action was more important in the inheritance of plant height. Favourable GCA and SCA effects for days to 50% flowering were observed in NGB00356, NGB00326 and NGB00347 × NGB00326, respectively. The tester NGB00326 had a positive and significant GCA effect for number of pods while the highest positive SCA effect for pod yield was found in NGB00297 × NGB00326. Thus, NGB00356 and NGB00326 could be considered as sources of alleles for development of early maturing while the cross NGB00297 × NGB00326 could be exploited for high yielding okra genotypes.


2018 ◽  
Vol 10 (12) ◽  
pp. 171
Author(s):  
Ulemu Mercy Msiska ◽  
Mehari Gebremedhn Hailay ◽  
Belay Weldekidan Miesho ◽  
Angele Pembele Ibanda ◽  
Phinehas Tukamuhabwa ◽  
...  

Adzuki bean bruchid (Callosobruchus chinensis) is a significant pest of soybean in Uganda. To sustainably manage this pest, utilization of resistant soybean varieties is the key solution. Development of resistant varieties needs knowledge on modes of inheritance which is crucial in selection of parent materials. To identify parents, a study was initiated to determine the gene action and mode of inheritance of resistance to bruchids in soybean. Nine parental lines were crossed in a full-diallel at Makerere University Agricultural Institute, Uganda. The generated F1s were advanced to F2 and seeds were evaluated for response to bruchid infestation in a randomised complete block design. Ten seeds were infested with 10 randomly selected unsexed 1-3 day old bruchids. Genotypes showed significant differences in seed weight loss (swl), adult bruchid emergence (ABE) and Dobie susceptibility index (DSI) indicating that these parameters could be used to screen genotypes in genetic analysis. Mean squares of general combining ability (GCA) were significant (P < 0.05) for swl, DSI and number of ABE from the F2 seeds indicating additive gene action. Susceptibility parameters ABE and DSI showed significant specific combining ability (SCA) indicating non-additive gene action. Resistance was influenced by maternal effects indicating that direction of the cross was important. Genotypes S-Line 9.2 and S-Line 13.2A showed negative significant GCA effects for at least two of the susceptibility parameters indicating that they were the best parents for bruchid resistance breeding. The study established that additive, non additive and maternal effects governed the gene expression in soybean resistance to bruchids.


2014 ◽  
Vol 12 (1) ◽  
pp. 1-8
Author(s):  
BP Mallikarjuna ◽  
N Shivakumar ◽  
J Devendrappa ◽  
VD Sheela ◽  
G Bharamappa ◽  
...  

Combining ability on grain yield and its components from line × tester analysis of thirty rice hybrids (Oryza sativa L.) produced by crossing three newly developed CMS lines and ten testers of local origin were studied. The analysis revealed higher SCA variance than GCA variance for all the characters except plant height indicating the prevalence of non-additive gene action. The line KCMS 45A and testers MSN 36 and KMR 3 were the good general combiners for yield and its major contributing characters. MSN 99 was the only good general combiner among the male parents for earliness and dwarfness. The hybrids KCMS 46A × MSN 75, KCMS 44A × KMR 4 and KCMS 45A × KMR 3 were identified as potential hybrids for yield contributing characters based on SCA effects which could be exploited in future rice breeding programme by adopting heterosis breeding strategy. The contribution of testers towards the total variance was found higher than lines and line x tester interaction suggesting predominant of testers influence for these characters. DOI: http://dx.doi.org/10.3329/sja.v12i1.21107 SAARC J. Agri., 12(1): 1-8 (2014)


2017 ◽  
Vol 51 (06) ◽  
Author(s):  
Rakesh Kumar Maida ◽  
M. P. Patel ◽  
Chandrabhan Ahirwar ◽  
A. M. Patel

Twenty eight hybrids developed by utilizing eight parents in 8 x 8 diallel mating design excluding reciprocals were evaluated in randomized block design with three replications for twelve characters in order to understand the combining ability and gene action in pigeonpea. The analysis of variance for combining ability revealed presence of additive and non- additive gene action. The ratio of gca/sca variance was less than unity which indicated the preponderance of non- additive gene action for action in the control of pod length, harvest index, protein content and leaf area. The estimates of general combining ability suggested that parents ICPL-87119, GT-103 and AGT-2 were good general combiners for seed yield per plant and its attributing characters while, hybrids UPAS-120 x GT-103, BSMR-853 x BANAS and BSMR-853 x GT-1 showed the higher order sca effect for seed yield per plant. These cross combinations can be potentially utilized in hybrid breeding programmes.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 609
Author(s):  
Ilias D. Avdikos ◽  
Rafail Tagiakas ◽  
Pavlos Tsouvaltzis ◽  
Ioannis Mylonas ◽  
Ioannis N. Xynias ◽  
...  

Tomato is one of the most consumed fruit vegetables globally and is a high dietary source of minerals, fiber, carotenoids, and vitamin C. The tomato is also well known for its nutraceutical chemical content which strengthens human immune systems and is protective against infectious and degenerative diseases. For this reason, there has been recent emphasis on breeding new tomato cultivars with nutraceutical value. Most of the modern tomato cultivars are F1 hybrids, and many of the characteristics associated with fruit quality have additive gene action; so, in theory, inbred vigor could reach hybrid vigor. A sum of 20 recombinant lines was released from the commercial single-cross hybrids Iron, Sahara, Formula, and Elpida, through a breeding process. Those recombinant lines were evaluated during spring–summer 2015 under organic farming conditions in a randomized complete block design (RCBD) experimental design with three replications. A sum of eleven qualitative characteristics of the fruit was recorded on an individual plant basis. Results from this study indicated that the simultaneous selection of individual tomato plants, both in terms of their high yield and desired fruit quality characteristics, can lead to highly productive recombinant lines with integrated quality characteristics. So, inbred vigor can reach and even surpass hybrid vigor. The response to selection for all characteristics evaluated shows additive gene action of all characteristics measured. These recombinant lines can fulfill this role as alternatives to hybrid cultivars and those that possess high nutritional values to function as functional-protective food.


Sign in / Sign up

Export Citation Format

Share Document