scholarly journals Analisis Petrografi Fasa Molybdenum (Mo) dari Oksida Primer Fe2O3 Deposit Bontocani dengan Teknik X-Ray Mapping dan Difraksi Sinar-X

2017 ◽  
Vol 4 (02) ◽  
pp. 134
Author(s):  
Subaer S ◽  
Nurhayati N ◽  
Nurhasmi N ◽  
Nurfadillah N

<p>A researh related to petrogaphy analysis of molybdenum (Mo) has been conducted. The main objective of this study is to get quantitative information about the composotion of molybdenum (Mo) as a minor phase of primer mineral Fe2O3 deposited at Bontocani, District of Bone South Sulawesi. The petrography analysis was performed on 10 samples by means of Tescan Vega3SB Scanning Electron Microscopy (SEM) coupled with Bruker X-Ray Mapping and Energy Dispersive Spectroscopy (EDS). Crystallinity level and chemical composition<br />(phase) mineral constituent were performed by using MiniFlexII X-Ray Diifraction (XRD). The petrography analysis in the form of elemental mapping show the position of Mo along with Fe, S and other elements. The XRD analysis showed that that the Mo mineral of Bontocani deposit is found in the form of pure Mo element with a concentration of 0.2 – 8.0 wt%, compound of Fe17(Mo3)0.1 and Fe2(MoO4)3 with a concentration of 2.04 wt% and 14.0 wt%.</p>

2014 ◽  
Vol 1019 ◽  
pp. 302-310 ◽  
Author(s):  
Kalenda Mutombo ◽  
Christina Kgomo ◽  
P. Rossouw

The interaction between the Ti6Al4V alloy and the mould materials was investigated. The alpha-case was characterized by Vickers hardness tester, optical and scanning electron microscopy equipped with electron dispersive X-ray spectrometry (EDX). X-ray diffraction (XRD) analysis was performed on as cast and on YFSZ or YZ-Blended face-coats. From the experimental results, a distinct alpha-case formation was revealed. The YFSZ led to a thicker and harder alpha-case than the YZ-Blended face-coat. The EDX revealed the presence of Zr and Si elements in both alpha-cases. Therefore, from experimental results and thermodynamic calculations, pure ZrO2and SiO2may react with Ti.


2013 ◽  
Vol 19 (S5) ◽  
pp. 157-161 ◽  
Author(s):  
Kyeongsoon Han ◽  
Sangjin Lee ◽  
Hwasoo Lee

AbstractDisputes on the painting methods of Goguryeo murals can mainly be categorized into whether the murals adapted eastern secco or western fresco; however, the murals have their own unique methods as well. There are different viewpoints among experts on interpreting the painting methods. This study involved the creation of research samples to discover the painting methods under dispute and may help discover the methods based on scanning electron microscopy energy-dispersive X-ray spectroscopy (SEM-EDX) studies. Goguryeo murals introduced pseudo-fresco rather than buon fresco methods. Unlike fresco techniques in the West, Goguryeo painters mixed traditional soft binders and adapted typical secco painting techniques for paintings, borders, and corrections after drying. The disputed issues may be resolved by these techniques, and samples may be produced based on the analyzed data. Therefore, many questions can finally be answered through SEM-EDX elemental mapping.


2011 ◽  
Vol 364 ◽  
pp. 368-371 ◽  
Author(s):  
Ibrahim Norfadhilah ◽  
Mohamad Hasmaliza ◽  
Zainal Arifin Ahmad ◽  
J. Banjuraizah

Cordierite was synthesized via glass-route using mineral and pure oxide material. Kaolin, talc, dolomite, magnesia, alumina, silica, and calcium oxide were mixed and melted. CaO from mineral and pure oxide was added in order to investigate the properties of each material in cordierite system. Sample was characterized using X-ray diffraction (XRD) analysis and dilatometer testing. The result showed that when 5wt% CaO from mineral (C5 Min) was added and sintered at 900°C, α-cordierite exist as major phase and anorthite as a minor phase. While for a sample consists of 5wt% CaO from pure oxide (C5 Ox), α-cordierite was present as major phases, µ-cordierite and anorthite as minor phases. Crystallite sizes of each material were in nanorange and crystallite size of C5 Ox was less than C5 Min.


2019 ◽  
Vol 946 ◽  
pp. 287-292
Author(s):  
Alexander Thoemmes ◽  
Ivan V. Ivanov ◽  
Alexey Ruktuev

The effect of Nb content on microstructure, mechanical properties and phase formation in as-melt and annealed binary Ti-Nb alloys were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analysis. The content of Nb varied in the range 25-35 mass % leading to significant changes in the microstructure. The annealed and furnace-cooled binary Ti-Nb samples exhibited HCP martensitic α` phase at a Nb content below 27.5 mass % and metastable BCC β phase at higher contents of Nb. The mechanical properties of alloys depended strongly on the Nb content and type of the dominating phase.


2014 ◽  
Vol 577 ◽  
pp. 1119-1122
Author(s):  
Na Li ◽  
Qi Wang ◽  
Peng Song

In this paper, we studied the effect of preparation on standard dry density and strength of foamed cement by orthogonal test. The results indicate that the more excellent combination is A1B1C1, namely G1, the standard dry density is 376 kg/m3, the flexural and compressive strengths are 0.43 MPa and 0.8 MPa respectively, and the thermal conductivity is 0.074 W/(m·K), which conforms to the characteristics of light weight and high strength. Fewer Ca (OH)2 crystals and more C-S-H gel generated in G1 through scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis is the reason for its high strength.


2018 ◽  
Vol 769 ◽  
pp. 29-34 ◽  
Author(s):  
Alexander Thoemmes ◽  
Ivan V. Ivanov ◽  
Adelya A. Kashimbetova

The effect of Nb content on microstructure, mechanical properties and phase formation in annealed and quenched binary Ti-Nb alloys were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analysis. The content of Nb varied in the range 0-37 mass % leading to significant changes in the microstructure. The annealed and furnace-cooled binary Ti-Nb samples exhibited HCP martensitic α` phase at a Nb content below 14 mass % and stable BCC β phase at higher contents of Nb. The structure of the quenched samples changed with increase of Nb content in the following order: coarse primary martensite → fine acicular (α`+α``) martensite → single β phase structure. The mechanical properties of alloys strongly depended on the Nb content and type of the dominating phase.


2020 ◽  
Vol 38 (2) ◽  
pp. 219-227
Author(s):  
Sumetha Suwanboon ◽  
Sarunya Klubnuan ◽  
Mukdawan Homkaew ◽  
Pongsaton Amornpitoksuk

Abstractβ-Ni(OH)2/ZnO composite powders were successfully synthesized by hydrothermal method at 180 °C for 15 h whereas NiO/ZnO composite powders formed after the as-prepared powders were calcined at 800 °C for 1 h in air. The X-ray diffractometer (XRD), scanning electron microscope (SEM), UV-Vis spectrophotometer were used to characterize the phase, particle shape as well as size and optical properties, respectively. In this system, it was found that ZnO is a major phase while β-Ni(OH)2 and NiO are a minor phases. The altered particle shape of ZnO was influenced by addition of Ni(CH3COO)2·6H2O whereas the particle shape of the minor phase was changed due to the calcination process. The optical band gap decreased when the amount of minor phase increased. For photocatalytic study, it was found that 6 mol% β-Ni(OH)2/ZnO composite powders exhibited the best decolorization of methylene blue aqueous solution.


2011 ◽  
Vol 305 ◽  
pp. 367-371
Author(s):  
Ning Li ◽  
Xi Ping Li ◽  
Guang Ming Cheng

Ni-Mo alloys have been studied as a prospected cathode for its higher hydrogen evolution reaction properties than other binary compounds. X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) microstructures show that the amorphous/nanocrystal Ni-Mo deposits were deposited. The Ni-Mo deposits cathode are electrolyzed in 25°C, 7 mol/L NaOH electrolytic solution. And when η100, the amorphous/nanocrystal Ni-Mo alloy with a lower hydrogen evolution overpotential, a higher exchange current density, and a better electrolytic stability is lower than amorphous Ni-Mo deposits. This is due to the amorphous content combined with nanocrystalline structure, lager contact surface and binding energy of Ni-Mo structure.


2016 ◽  
Vol 19 (3) ◽  
pp. 145-150 ◽  
Author(s):  
Meysam Karimi ◽  
Mohammad Rabiee ◽  
Mojgan Abdolrahim ◽  
Mohammadreza Tahriri ◽  
Daryoosh Vashayee ◽  
...  

We present a study of the effect of graphene–PANI nanocomposites on the sensitivity of the urea and glucose multisensory. We used an electroctrochemical multisensor based on two electrodes located in a reservoir with two separate channels. The urease and glu-cose oxidase (GOD) were employed for detecting the urea and glucose, respectively. We characterized the graphene and graphene-PANI samples with X-ray Diffraction (XRD) analysis and scanning electron microscopy (SEM) observations. We further performed the Cyclic voltammetry and Amperometry tests. The collected experimental results revealed that the intensity of the peak significantly increases with the concentration of the urea and glucose.


Sign in / Sign up

Export Citation Format

Share Document