Comparison of Fine-Grained, Mud-Rich and Coarse-Grained, Sand-Rich Submarine Fans for Exploration-Development Purposes : ABSTRACT

AAPG Bulletin ◽  
1997 ◽  
Vol 81 (1997) ◽  
Author(s):  
BOUMA, ARNOLD H. 
2021 ◽  
Vol 9 (11) ◽  
pp. 289-301
Author(s):  
Koffi Chiaye Larissa ◽  
◽  
Djeya Kouame Leger ◽  
Douzo Jolie Wanesse Danielle ◽  
Monde Sylvain ◽  
...  

The KL block studies was carried out the eastern part of the San Pedro margin, it has an area of 2034 km2 with a water depth varying from 500 to 2750 m with two probings (K1 and K2).The objective of this work is to carry out a biostratigraphic and paleoenvironmental study based on the associations of planktonic and palynomorphicmicrofauna in the formations of the KL block boreholes. From a lithological point of view, the base of the boreholes generally comprises alternating limestone and argillite, very fine to fine grained quartz sandstone. Its upper part is overlain by claystoneinterbedded with limestone, silstone and siliceous cemented sandstone and alternating claystone, medium to coarse grained sand and siliceous cemented quartz sandstone. The Albian is determined by the presence of the species Ticinellamadecassiana. The Cenomanian is identified by the micropalaeontological assemblages composed of Globigerinelloides spp., Guembelitria spp., Hedbergella spp., Hedbergelladelrioensis, Globigerinelloides bentonensisandLoeblichella cf. hessi. The Turonian is based mainly on the species Hedbergellaplanispira, Heterohelixmoremani and Whiteinella archaeocretacea. The Early Senonian is characterized by associations of species (Hedbergellasp, Hedbergella cf. delrioensis, Buliminacrassa and Whiteinella baltica) and palynomorphs (Proteaciditestienabaensis, Odontochitinacostata, Odontochitinaporiferaand Tricolpites sp). The roof of the Campanian is known by the association of the palynomorph (Trichodinium castanae) and the microfossil (Gaudryina cretacea) The Maastrichtian is highlighted by the associations composed of species Rzehakina epigona fissistomata, Rzehakina minima, Plectina lenis, Reophax duplex, Reophax pilulifera, Reophax globosus, Gaudryina pyramidata and Afrobolivina afra) and palynomorphic species (Andalusiella gabonensis, Cerodinium granulostriatum and Palaeocystodinium australinium). All the micropalaeontological data coupled with those of the microfaunas make it possible to envisage a depositional environment of the internal platform type with continental influence on an external platform.


2020 ◽  
Vol 178 (1) ◽  
pp. jgs2019-173 ◽  
Author(s):  
Blanca Cantalejo ◽  
Kevin T. Pickering ◽  
Ken G. Miller ◽  
Conall Mac Niocaill

In an attempt to understand the relative importance of climate and tectonics in modulating coarse-grained sediment flux to a tectonically active basin during what many researchers believe to be a greenhouse period, we have studied the Middle Eocene deep-marine Aínsa Basin, Spanish Pyrenees. We use orbital tuning of many spectral gamma-ray-logged fine-grained siliciclastic sections, already shown to contain Milankovitch frequencies, in conjunction with a new high-resolution palaeomagnetic study through the basin sediments, to identify polarity reversals in the basin as anchor points to allow the conversion of a depth-stratigraphy to a chronostratigraphy. We use these data, in conjunction with a new age model incorporating new biostratigraphic data, to pace the development of the deep-marine sandy submarine fans over c. 8 million years. Timing for the sandy submarine fans shows that, unlike for the fine-grained interfan sediments, coarse-grained delivery to the basin was more complex. Approximately 72% of the sandy fans are potentially coincident with the long-eccentricity (400 kyr) minima and, therefore, potentially recording changing climate. The stratigraphic position of some sandy fans is at variance with this, specifically those that likely coincide with a period of known increased tectonic activity within the Aínsa Basin, which we propose represents the time when the basin was converted into a thrust-top basin (Gavarnie thrust sheet), presumably associated with rapid uplift and redeposition of coarse clastics into deep-marine environments. We also identify sub-Milankovitch climate signals such as the c. 41.5 Ma Late Lutetian Thermal Maximum. This study demonstrates the complex nature of drivers on deep-marine sandy fans in a tectonically active basin over c. 8 Myr. Findings of this study suggest that, even during greenhouse periods, sandy submarine fans are more likely linked with times of eccentricity minima and climate change, broadly consistent with the concept of lowstand fans. However, hysteresis effects in orogenic processes of mountain uplift, erosion and delivery of coarse siliciclastics via fluvial systems to coastal (deltaic) and shallow-marine environments likely contributed to the complex signals that we recognize, including the 2–3 Myr time gap between the onset of deep-marine fine-grained sediments in the early development of the Aínsa Basin and the arrival of the first sandy fans.Supplementary Materials: Filtered records for each of the analysed gamma-ray logged sections. Anchor points, SARs tables and graphs and alternative tuning sections are available at: https://doi.org/10.6084/m9.figshare.c.5132975


Author(s):  
Wang Zheng-fang ◽  
Z.F. Wang

The main purpose of this study highlights on the evaluation of chloride SCC resistance of the material,duplex stainless steel,OOCr18Ni5Mo3Si2 (18-5Mo) and its welded coarse grained zone(CGZ).18-5Mo is a dual phases (A+F) stainless steel with yield strength:512N/mm2 .The proportion of secondary Phase(A phase) accounts for 30-35% of the total with fine grained and homogeneously distributed A and F phases(Fig.1).After being welded by a specific welding thermal cycle to the material,i.e. Tmax=1350°C and t8/5=20s,microstructure may change from fine grained morphology to coarse grained morphology and from homogeneously distributed of A phase to a concentration of A phase(Fig.2).Meanwhile,the proportion of A phase reduced from 35% to 5-10°o.For this reason it is known as welded coarse grained zone(CGZ).In association with difference of microstructure between base metal and welded CGZ,so chloride SCC resistance also differ from each other.Test procedures:Constant load tensile test(CLTT) were performed for recording Esce-t curve by which corrosion cracking growth can be described, tf,fractured time,can also be recorded by the test which is taken as a electrochemical behavior and mechanical property for SCC resistance evaluation. Test environment:143°C boiling 42%MgCl2 solution is used.Besides, micro analysis were conducted with light microscopy(LM),SEM,TEM,and Auger energy spectrum(AES) so as to reveal the correlation between the data generated by the CLTT results and micro analysis.


Author(s):  
Zhuliang Yao ◽  
Shijie Cao ◽  
Wencong Xiao ◽  
Chen Zhang ◽  
Lanshun Nie

In trained deep neural networks, unstructured pruning can reduce redundant weights to lower storage cost. However, it requires the customization of hardwares to speed up practical inference. Another trend accelerates sparse model inference on general-purpose hardwares by adopting coarse-grained sparsity to prune or regularize consecutive weights for efficient computation. But this method often sacrifices model accuracy. In this paper, we propose a novel fine-grained sparsity approach, Balanced Sparsity, to achieve high model accuracy with commercial hardwares efficiently. Our approach adapts to high parallelism property of GPU, showing incredible potential for sparsity in the widely deployment of deep learning services. Experiment results show that Balanced Sparsity achieves up to 3.1x practical speedup for model inference on GPU, while retains the same high model accuracy as finegrained sparsity.


2021 ◽  
Vol 83 (4) ◽  
Author(s):  
S. Adam Soule ◽  
Michael Zoeller ◽  
Carolyn Parcheta

AbstractHawaiian and other ocean island lava flows that reach the coastline can deposit significant volumes of lava in submarine deltas. The catastrophic collapse of these deltas represents one of the most significant, but least predictable, volcanic hazards at ocean islands. The volume of lava deposited below sea level in delta-forming eruptions and the mechanisms of delta construction and destruction are rarely documented. Here, we report on bathymetric surveys and ROV observations following the Kīlauea 2018 eruption that, along with a comparison to the deltas formed at Pu‘u ‘Ō‘ō over the past decade, provide new insight into delta formation. Bathymetric differencing reveals that the 2018 deltas contain more than half of the total volume of lava erupted. In addition, we find that the 2018 deltas are comprised largely of coarse-grained volcanic breccias and intact lava flows, which contrast with those at Pu‘u ‘Ō‘ō that contain a large fraction of fine-grained hyaloclastite. We attribute this difference to less efficient fragmentation of the 2018 ‘a‘ā flows leading to fragmentation by collapse rather than hydrovolcanic explosion. We suggest a mechanistic model where the characteristic grain size influences the form and stability of the delta with fine grain size deltas (Pu‘u ‘Ō‘ō) experiencing larger landslides with greater run-out supported by increased pore pressure and with coarse grain size deltas (Kīlauea 2018) experiencing smaller landslides that quickly stop as the pore pressure rapidly dissipates. This difference, if validated for other lava deltas, would provide a means to assess potential delta stability in future eruptions.


Author(s):  
Shanshan Yu ◽  
Jicheng Zhang ◽  
Ju Liu ◽  
Xiaoqing Zhang ◽  
Yafeng Li ◽  
...  

AbstractIn order to solve the problem of distributed denial of service (DDoS) attack detection in software-defined network, we proposed a cooperative DDoS attack detection scheme based on entropy and ensemble learning. This method sets up a coarse-grained preliminary detection module based on entropy in the edge switch to monitor the network status in real time and report to the controller if any abnormality is found. Simultaneously, a fine-grained precise attack detection module is designed in the controller, and a ensemble learning-based algorithm is utilized to further identify abnormal traffic accurately. In this framework, the idle computing capability of edge switches is fully utilized with the design idea of edge computing to offload part of the detection task from the control plane to the data plane innovatively. Simulation results of two common DDoS attack methods, ICMP and SYN, show that the system can effectively detect DDoS attacks and greatly reduce the southbound communication overhead and the burden of the controller as well as the detection delay of the attacks.


Hydrocarbon gels contain a number of materials, such as rubber, greases, saponified mineral oils, etc., of great interest for various engineering purposes. Specific requirements in mechanical properties have been met by producing gels in appropriately chosen patterns of constituent components of visible, colloidal, molecular and atomic sizes, ranging from coarse-grained aggregates, represented by sponges, foams, emulsions, etc.; to fine-grained and apparently homogeneous ones, represented by optically clear compounds. The engineer who has to deal with the whole range of such materials will adopt a macroscopic point of view, based on an apparent continuity of all the material structures and of the distributions in space and time of the displacements and forces occurring under mechanical actions. It has been possible to determine these distributions in the framework of a comprehensive scheme in which the fundamental principles of the mechanics of continuous media provide the theoretical basis, and a testing instrument of new design, termed Rheogoniometer, the means of experimental measurement (Weissenberg 1931, 1934, 1946, 1947, 1948).


2015 ◽  
Vol 1114 ◽  
pp. 3-8
Author(s):  
Nicolae Şerban ◽  
Doina Răducanu ◽  
Nicolae Ghiban ◽  
Vasile Dănuţ Cojocaru

The properties of ultra-fine grained materials are superior to those of corresponding conventional coarse grained materials, being significantly improved as a result of grain refinement. Equal channel angular pressing (ECAP) is an efficient method for modifying the microstructure by refining grain size via severe plastic deformation (SPD) in producing ultra-fine grained materials (UFG) and nanomaterials (NM). The grain sizes produced by ECAP processing are typically in the submicrometer range and this leads to high strength at ambient temperatures. ECAP is performed by pressing test samples through a die containing two channels, equal in cross-section and intersecting at a certain angle. The billet experiences simple shear deformation at the intersection, without any precipitous change in the cross-section area because the die prevents lateral expansion and therefore the billet can be pressed more than once and it can be rotated around its pressing axis during subsequent passes. After ECAP significant grain refinement occurs together with dislocation strengthening, resulting in a considerable enhancement in the strength of the alloys. A commercial AlMgSi alloy (AA6063) was investigated in this study. The specimens were processed for a number of passes up to nine, using a die channel angle of 110°, applying the ECAP route BC. After ECAP, samples were cut from each specimen and prepared for metallographic analysis. The microstructure of the ECAP-ed and as-received material was investigated using optical (OLYMPUS – BX60M) and SEM microscopy (TESCAN VEGA II – XMU). It was determined that for the as-received material the microstructure shows a rough appearance, with large grains of dendritic or seaweed aspect and with a secondary phase at grain boundaries (continuous casting structure). For the ECAP processed samples, the microstructure shows a finished aspect, with refined, elongated grains, also with crumbled and uniformly distributed second phase particles after a typical ECAP texture.


2002 ◽  
Vol 51 ◽  
pp. 215-232
Author(s):  
Scott Sturgeon

Consider the frameS believes that—.Fill it with a conditional, sayIf you eat an Apple, you'll drink a Coke.what makes the result true? More generally, what facts are marked by instances ofS believes (A→C)?In a sense the answer is obious: beliefs are so marked. Yet that bromide leads directly to competing schools of thought. And the reason is simple.Common-sense thinks of belief two ways. Sometimes it sees it as a three-part affair. When so viewed either you believe, disbelieve, or suspend judgment. This take on belief is coarse-grained. It says belief has three flavours: acceptance, rejection, neither. But it's not the only way common-sense thinks of belief. Sometimes it's more subtle: ‘How strong is your faith?’ can be apposite between believers. That signals an important fact. Ordinary practice also treats belief as a fine-grained affair. It speaks of levels of confidence. It admits degrees of belief. It contains a fine-grained take as well. There are two ways belief is seen in everyday life. One is coarse-grained. The other is fine-grained.


Sign in / Sign up

Export Citation Format

Share Document