scholarly journals Wind Speed Affects Pollination Success in Blackberries

Sociobiology ◽  
2018 ◽  
Vol 65 (2) ◽  
pp. 225 ◽  
Author(s):  
Allison Young ◽  
Pilar Gomez-Ruiz ◽  
Janelle Pena ◽  
Hiromi Uno ◽  
Rodolfo Jaffé

Pollination of wild plants and agricultural crops is a vitally important ecosystem service. Many landscape and environmental factors influence the pollination success of crops, including distance from natural habitat, wind speed, and solar radiation. Although there is a general consensus that increasing distance from forest decreases pollination success, few studies have examined the influence of specific environmental factors. In this study, we examined which environmental factors influence the pollination success of blackberries (Rubus glaucus). We measured the number of fruitlets per berry, a proxy for pollination success, as well as the weight and sweetness of each berry. Our results indicate that number of fruitlets is positively correlated with wind speed, but number of unripe red berries per bush is negatively correlated with wind speed. In addition, sweetness increased with increasing numbers of red berries per bush but was lower when flowers and berries were present, though this result should be considered with caution due to methodological limitations. Our findings suggest that a little studied environmental factor, wind, has a large impact on the number of fruitlets in blackberries. Although our findings should be confirmed in other locations to draw broader conclusions, they suggest that producers should consider the effect of wind on blackberry yield to optimize blackberry production.

2021 ◽  
Vol 16 (AAEBSSD) ◽  
pp. 29-33
Author(s):  
D.M. Damasia ◽  
Z.P. Patel ◽  
H.P. Dholariya ◽  
N.M. Thesiya

Studies were conducted in a cashew plantation at Waghai, Gujarat, India during 2017 – 19 on cashew variety vengurla- 4 throughout two consecutive years to determine the pest status of leaf miner, Acrocercops syngramma Meyrick and their relation with environmental factor. Damage to cashew leaf by leaf miner was prevailed only from July to December with maximum damage (2.19%) in the month of November 45th SMW in hilly area of the Dangs. Further, pest infestation on leaves found to have significant positive correlation with maximum temperature, mean temperature, bright sunshine and evaporation, while negative with morning relative humidity, evening relative humidity, mean relative humidity and wind speed.


2021 ◽  
Vol 7 (2) ◽  
pp. 30-33
Author(s):  
Utpal Srivastava ◽  
Dr Rajeev Arya ◽  
Shravan Vishwakarma

Solar photovoltaic systems have long been used to generate power for various applications since the 1990s. The efficiency of the solar photovoltaic model is determined by the available solar radiation and various environmental factors such as humidity, temperature, dust, snow, bird droppings, etc. This environmental factor reduces the performance of the photovoltaic modules. This document discusses the different technologies for cleaning PV modules with their performance in different environments. The problems associated with the different types of cleaning systems are also discussed.


2021 ◽  
Vol 10 (4) ◽  
pp. 196
Author(s):  
Julio Manuel de Luis-Ruiz ◽  
Benito Ramiro Salas-Menocal ◽  
Gema Fernández-Maroto ◽  
Rubén Pérez-Álvarez ◽  
Raúl Pereda-García

The quality of human life is linked to the exploitation of mining resources. The Exploitability Index (EI) assesses the actual possibilities to enable a mine according to several factors. The environment is one of the most constraining ones, but its analysis is made in a shallow way. This research is focused on its determination, according to a new preliminary methodology that sets the main components of the environmental impact related to the development of an exploitation of industrial minerals and its weighting according to the Analytic Hierarchy Process (AHP). It is applied to the case of the ophitic outcrops in Cantabria (Spain). Twelve components are proposed and weighted with the AHP and an algorithm that allows for assigning a normalized value for the environmental factor to each deposit. Geographic Information Systems (GISs) are applied, allowing us to map a large number of components of the environmental factors. This provides a much more accurate estimation of the environmental factor, with respect to reality, and improves the traditional methodology in a substantial way. It can be established as a methodology for mining spaces planning, but it is suitable for other contexts, and it raises developing the environmental analysis before selecting the outcrop to be exploited.


2011 ◽  
Vol 4 (10) ◽  
pp. 2273-2292 ◽  
Author(s):  
S. Schweitzer ◽  
G. Kirchengast ◽  
V. Proschek

Abstract. LEO-LEO infrared-laser occultation (LIO) is a new occultation technique between Low Earth Orbit (LEO) satellites, which applies signals in the short wave infrared spectral range (SWIR) within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO) method that enables to retrieve thermodynamic profiles (pressure, temperature, humidity) and altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss these influences, assessing effects from refraction, trace species absorption, aerosol extinction and Rayleigh scattering in detail, and addressing clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation as well. We show that the influence of refractive defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle with a close frequency spacing of LIO absorption and reference signals within 0.5%. The influences of Rayleigh scattering and terrestrial thermal radiation are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions, but this influence can be made negligible by a close time spacing (within 5 ms) of interleaved laser-pulse and background signals. Cloud extinction loss generally blocks SWIR signals, except very thin or sub-visible cirrus clouds, which can be addressed by retrieving a cloud layering profile and exploiting it in the trace species retrieval. Wind can have a small influence on the trace species absorption, which can be made negligible by using a simultaneously retrieved or a moderately accurate background wind speed profile. We conclude that the set of SWIR channels proposed for implementing the LMIO method (Kirchengast and Schweitzer, 2011) provides adequate sensitivity to accurately retrieve eight trace species of key importance to climate and atmospheric chemistry (H2O, CO2, 13CO2, C18OO, CH4, N2O, O3, CO) in the upper troposphere/lower stratosphere region outside clouds under all atmospheric conditions. Two further species (HDO, H218O) can be retrieved in the upper troposphere.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Essaied M Shuia ◽  
Bashir H Arebi ◽  
Ibrahim A abuashe

This paper presents the experimental data that was collected from small pilot solar chimney. The experimental data together with ambient conditions are used to evaluate the performance and study the behavior of the solar chimney; this data will be used for comparison with theoretical models in another paper [part II). The solar chimney prototype was designed and constructed at the Subrata Faculty of Engineering-Libya. The data were collected over several days of June 2011. The solar chimney system contains two main components; the solar collector and the solar chimney. The solar collector root‘ has a circular area of126 m3, the solar chimney is a PVC tube with internal diameter of 0.2 m and the total height of chimney is 9.3 m. The measurements include the intensity of solar radiation inside/outside the collector, temperature and velocity of air at the entrance of the chimney, temperature and speed of wind outside the collector, temperature of the ground inside collector al1d temperature measurements of air at speci?c points at different levels throughout the collector. Solar irradiance was found to affect the chimney temperature and subsequently affects chimney air velocity. The experimental results showed that temperature differences of (30 - 45°C) were recorded between the ambient temperature and that of air inside the chimney in the middle of the day, where the highest air temperature of 73.4°C was recorded at the entrance of the solar chimney. The maximum air velocity of 3.6 m/s was recorded inside the solar chimney at noon on 9 June. Wind speed outside the collector had a small effect on the speed of the air inside the chimney and tends to change slightly, hence, can neglect influence of wind speed on the performance of the system. Also the experimental results indicate that such type of system can trap a suf?cient amount of solar radiation, which elevates the air temperature to a suf?cient value able to generate enough air ?ow to operate a wind turbine to produce electricity; this means the solar chimney system for electricity production can work in the north-western part of Libya in the summer time at least.


Author(s):  
Gustavo H. da Silva ◽  
Santos H. B. Dias ◽  
Lucas B. Ferreira ◽  
Jannaylton É. O. Santos ◽  
Fernando F. da Cunha

ABSTRACT FAO Penman-Monteith (FO-PM) is considered the standard method for the estimation of reference evapotranspiration (ET0) but requires various meteorological data, which are often not available. The objective of this work was to evaluate the performance of the FAO-PM method with limited meteorological data and other methods as alternatives to estimate ET0 in Jaíba-MG. The study used daily meteorological data from 2007 to 2016 of the National Institute of Meteorology’s station. Daily ET0 values were randomized, and 70% of these were used to determine the calibration parameters of the ET0 for the equations of each method under study. The remaining data were used to test the calibration against the standard method. Performance evaluation was based on Willmott’s index of agreement, confidence coefficient and root-mean-square error. When one meteorological variable was missing, either solar radiation, relative air humidity or wind speed, or in the simultaneous absence of wind speed and relative air humidity, the FAO-PM method showed the best performances and, therefore, was recommended for Jaíba. The FAO-PM method with two missing variables, one of them being solar radiation, showed intermediate performance. Methods that used only air temperature data are not recommended for the region.


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0205260 ◽  
Author(s):  
Jianming Deng ◽  
Wei Zhang ◽  
Boqiang Qin ◽  
Yunlin Zhang ◽  
Hans W. Paerl ◽  
...  

Author(s):  
Jhon Charles Donato Rondón ◽  
Yaira Ayarith Abuhatab Aragón

This study assessed short-term succession and related changes in diversity and succession of benthic diatom assemblages in a tropical rainforest stream in the biogeographic region of Chocó, Colombia. Diatom colonization in situ was studied over a 60-day period, in which we analyzed the number of valves and the taxonomic changes. The Shannon index ranged from 2.06 to 3.02 bits. A total of 127 species were identified and the most abundant were acidophilic species such as Eunotia intermedia, E. veneris, E. bilunaris var. mucophila, E. pirla and E. bilunaris. A Detrended Canonical Correspondence Analysis (DCCA) was used to explore the succession of diatom assemblages and its driving environmental factors. The DCCA explained 74.1% of the correlation between environmental variables and diatom species and 16.2% of the data variance. The species fell into four groups, the first group (Eunotia incisa, Frustulia saxonica, Fragilaria capucina var. acatu, among others) was related to lower nitrate concentrations, acidic pH and lower water temperature. The second group (Fragilaria capensis, Gomphonema olivaceum, Cymbella gracilis, among others) was associated to higher alkalinity and lower solar radiation availability. The third group (Nitzschia obtusa, N. amphibia, Naviculadicta vitabunda, Navicula cryptocephala, among others) was related to lower phosphate, higher nitrate concentrations, lower pH, and higher temperatures. The fourth group (Eunotia soleirolli, Frustulia vulgaris and F. rhomboides) was associated with higher solar radiation and lower alkalinity. These results underscore the importance of diatom diversity in Neotropical streams and the relevance of small variations in environmental factors on the composition of reference assemblages of Neotropical fluvial systems.


Sign in / Sign up

Export Citation Format

Share Document