Total synthesis of novel dictyostatin analogs and hybrids as microtubule-stabilizing anticancer agents

2009 ◽  
Vol 81 (2) ◽  
pp. 169-180 ◽  
Author(s):  
Ian Paterson ◽  
Nicola M. Gardner ◽  
Guy J. Naylor

Structural modification of the dictyostatin macrolide template through adaptation of our total synthesis has led to the identification of a number of potent analogs of this novel microtubule-stabilizing agent. A common synthetic strategy was exploited, employing a (Z)-selective Still-Gennari olefination between various advanced C11-C26 aldehyde and C4-C10 (or C1-C10) β-ketophosphonate intermediates. In vitro evaluation of the growth inhibitory activity of these analogs against both Taxol-sensitive and -resistant human cancer cell lines has provided a foundation for structure-activity relationship (SAR) studies to help define the pharmacophore region.

2021 ◽  
Vol 22 (22) ◽  
pp. 12272
Author(s):  
Rania Hamdy ◽  
Arwyn T. Jones ◽  
Mohamed El-Sadek ◽  
Alshaimaa M. Hamoda ◽  
Sarra B. Shakartalla ◽  
...  

A series of 3-(6-substituted phenyl-[1,2,4]-triazolo[3,4-b]-[1,3,4]-thiadiazol-3-yl)-1H-indoles (5a–l) were designed, synthesized and evaluated for anti-apoptotic Bcl-2-inhibitory activity. Synthesis of the target compounds was readily accomplished through a reaction of acyl hydrazide (1) with carbon disulfide in the presence of alcoholic potassium hydroxide to afford the corresponding intermediate potassium thiocarbamate salt (2), which underwent cyclization reaction in the presence of excess hydrazine hydrate to the corresponding triazole thiol (3). Further cyclisation reaction with substituted benzoyl chloride derivatives in the presence of phosphorous oxychloride afforded the final 6-phenyl-indol-3-yl [1,2,4]-triazolo[3,4-b]-[1,3,4]-thiadiazole compounds (5a–l). The novel series showed selective sub-micromolar IC50 growth-inhibitory activity against Bcl-2-expressing human cancer cell lines. The most potent 6-(2,4-dimethoxyphenyl) substituted analogue (5k) showed selective IC50 values of 0.31–0.7 µM against Bcl-2-expressing cell lines without inhibiting the Bcl-2-negative cell line (Jurkat). ELISA binding affinity assay (interruption of Bcl-2-Bim interaction) showed potent binding affinity for (5k) with an IC50 value of 0.32 µM. Moreover, it fulfils drug likeness criteria as a promising drug candidate.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 437
Author(s):  
Shu-Qin Qin ◽  
Lian-Chun Li ◽  
Jing-Ru Song ◽  
Hai-Yun Li ◽  
Dian-Peng Li

A series of novel structurally simple analogues based on nitidine was designed and synthesized in search of potent anticancer agents. The antitumor activity against human cancer cell lines (HepG2, A549, NCI-H460, and CNE1) was performed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay in vitro. The results showed that some of them had good anticancer activities, especially derivatives with a [(dimethylamino)ethyl]amino side chain in the C-6 position. Planar conjugated compounds 15a, 15b, and 15c, with IC50 values of 1.20 μM, 1.87 μM, and 1.19 μM against CNE1 cells, respectively, were more active than nitidine chloride. Compound 15b and compound 15c with IC50 values of 1.19 μM and 1.37 μM against HepG2 cells and A549 cells demonstrated superior activities to nitidine. Besides, compound 5e which had a phenanthridinone core displayed extraordinary cytotoxicity against all test cells, particularly against CNE1 cells with the IC50 value of 1.13 μM.


2018 ◽  
Vol 68 (4) ◽  
pp. 471-483 ◽  
Author(s):  
Kristina Pavić ◽  
Zrinka Rajić ◽  
Zvonimir Mlinarić ◽  
Lidija Uzelac ◽  
Marijeta Kralj ◽  
...  

Abstract In the current paper, we describe the design, synthesis and antiproliferative screening of novel chloroquine derivatives with a quinoline core linked to a hydroxy or halogen amine through a flexible aminobutyl chain and urea spacer. Synthetic pathway leading to chloroquine urea derivatives 4-10 includes two crucial steps: i) synthesis of chloroquine benzotriazolide 3 and ii) formation of urea derivatives through the reaction of compound 3 with the corresponding amine. Testing of antiproliferative activity against four human cancer cell lines revealed that chloroquine urea derivatives 9 and 10 with aromatic moieties show activity at micromolar concentrations. Therefore, these molecules represent interesting lead compounds that might provide an insight into the design of new anticancer agents.


2008 ◽  
Vol 18 (24) ◽  
pp. 6451-6453 ◽  
Author(s):  
Naoto Kojima ◽  
Hiromi Hayashi ◽  
Satoshi Suzuki ◽  
Hiroaki Tominaga ◽  
Naoyoshi Maezaki ◽  
...  

2020 ◽  
Vol 27 (3) ◽  
pp. 345-352
Author(s):  
Ramesh Sawant ◽  
Jyoti Wadekar ◽  
Rushikesh Ukirde ◽  
Ganesh Barkade

Background: Cancer is a major cause of death all over the globe. Controlling cell division byinhibition of mitosis is the most successful clinical strategy for cancer treatment. The developmentof novel anticancer agents is the most important area in medicinal chemistry and drug discoveryresearch. Thiazolidine is the multifunctional nucleus which shows a number of pharmacologicalactivities like anticancer, anti-inflammatory, antioxidant, antibacterial, antifungal, antidiabetic,antihyperlipidemic and antiarthritic. Methods: In a present study series of 2-substituted-3-(1H-benzimidazole-2-yl)-thiazolidin-4-ones were designed, synthesized by the microwave-assisted system, and characterized bymelting point, IR, 1H NMR, and mass spectroscopy. All the newly synthesized compoundswere examined for their in vitro anticancer activity against breast cancer cell line MCF-7 bySulforhodamine B (SRB) assay. Results: The compounds AB-12 (GI50: 28.5 μg/ml) and AB-6 (GI50: 50.7 μg/ml) exhibitedsignificant cell growth inhibitory activity. Conclusion: These results indicate that compound AB-12 and AB-6 as related polo-like kinase1inhibitors compounds could be lead compounds for further development of anticanceragents.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1066 ◽  
Author(s):  
Mohamed El-Naggar ◽  
Hanan A. Sallam ◽  
Safaa S. Shaban ◽  
Salwa S. Abdel-Wahab ◽  
Abd El-Galil E. Amr ◽  
...  

A new series of 5-(3,5-dinitrophenyl)-1,3,4-thiadiazole derivatives were prepared and evaluated for their in vitro antimicrobial, antitumor, and DHFR inhibition activity. Compounds 9, 10, 13, and 16 showed strong and broad-spectrum antimicrobial activity comparable to Amoxicillin and Fluconazole as positive antibiotic and antifungal controls, respectively. Compounds 6, 14, and 15 exhibited antitumor activity against four human cancer cell lines, CCRF-CEM leukemia, HCT-15 colon, PC-3 prostate, and UACC-257 melanoma cell lines using Doxorubicin as a reference drug. Compounds 10, 13, 14, and 15 proved to be the most active DHFR inhibitors with an IC50 range of 0.04 ± 0.82–1.00 ± 0.85 µM, in comparison with Methotrexate (IC50 = 0.14 ± 1.38 µM). The highly potent DHFR inhibitors shared a similar molecular docking mode and made a critical hydrogen bond and arene‒arene interactions via Ser59 and Phe31 amino acid residues, respectively.


2020 ◽  
Vol 15 (6) ◽  
pp. 1934578X2093196
Author(s):  
Dang Thi Tuyet Anh ◽  
Dinh Thi Cuc ◽  
Le Nhat Thuy Giang ◽  
Nguyen Thi Hien ◽  
Vu Ngoc Doan ◽  
...  

A series of new hydroxamate derivatives of lupane triterpenoids has been designed and successfully synthesized. The synthesized compounds were evaluated for their in vitro antitumor activity using the 3-[4,5-dimethylthiazol-2-yl]−2,5-diphenyltetrazolium bromide-based assay against the human cancer cell lines KB and HepG2. Most of these derivatives possess at least moderate cytotoxic activity and the hydroxamate derivative compounds 3c, 3e, 7a, and 15b could be lead compounds for further optimization to develop novel anticancer agents.


Sign in / Sign up

Export Citation Format

Share Document