Daily variation characteristics of CO2 emission fluxes and contributions of environmental factors in semiarid grassland of Inner Mongolia, China

2005 ◽  
Vol 48 (7) ◽  
pp. 1052 ◽  
Author(s):  
Yuchun QI
2014 ◽  
Vol 11 (19) ◽  
pp. 5567-5579 ◽  
Author(s):  
Y. Kim ◽  
K. Nishina ◽  
N. Chae ◽  
S. J. Park ◽  
Y. J. Yoon ◽  
...  

Abstract. The tundra ecosystem is quite vulnerable to drastic climate change in the Arctic, and the quantification of carbon dynamics is of significant importance regarding thawing permafrost, changes to the snow-covered period and snow and shrub community extent, and the decline of sea ice in the Arctic. Here, CO2 efflux measurements using a manual chamber system within a 40 m × 40 m (5 m interval; 81 total points) plot were conducted within dominant tundra vegetation on the Seward Peninsula of Alaska, during the growing seasons of 2011 and 2012, for the assessment of driving parameters of CO2 efflux. We applied a hierarchical Bayesian (HB) model – a function of soil temperature, soil moisture, vegetation type, and thaw depth – to quantify the effects of environmental factors on CO2 efflux and to estimate growing season CO2 emissions. Our results showed that average CO2 efflux in 2011 was 1.4 times higher than in 2012, resulting from the distinct difference in soil moisture between the 2 years. Tussock-dominated CO2 efflux is 1.4 to 2.3 times higher than those measured in lichen and moss communities, revealing tussock as a significant CO2 source in the Arctic, with a wide area distribution on the circumpolar scale. CO2 efflux followed soil temperature nearly exponentially from both the observed data and the posterior medians of the HB model. This reveals that soil temperature regulates the seasonal variation of CO2 efflux and that soil moisture contributes to the interannual variation of CO2 efflux for the two growing seasons in question. Obvious changes in soil moisture during the growing seasons of 2011 and 2012 resulted in an explicit difference between CO2 effluxes – 742 and 539 g CO2 m−2 period−1 for 2011 and 2012, respectively, suggesting the 2012 CO2 emission rate was reduced to 27% (95% credible interval: 17–36%) of the 2011 emission, due to higher soil moisture from severe rain. The estimated growing season CO2 emission rate ranged from 0.86 Mg CO2 in 2012 to 1.20 Mg CO2 in 2011 within a 40 m × 40 m plot, corresponding to 86 and 80% of annual CO2 emission rates within the western Alaska tundra ecosystem, estimated from the temperature dependence of CO2 efflux. Therefore, this HB model can be readily applied to observed CO2 efflux, as it demands only four environmental factors and can also be effective for quantitatively assessing the driving parameters of CO2 efflux.


2019 ◽  
Author(s):  
Hao Liang ◽  
Meng Zhang ◽  
Yandong Zhao ◽  
Chao Gao ◽  
Hailan Wang

To achieve a rational allocation of limited water resources, and formulation of an appropriate irrigation system, this research studied the change characteristics of stem water content (StWC) in plant and its response to micro-environmental factors. In this study, the StWC and micro-environmental factors of Lagerstroemia indica in Beijing were continuously observed by BD-IV plant stem water content sensor and a forest microclimate monitoring station from 2017 to 2018. The variation of StWC and its correlation with environmental factors were analyzed. The results showed the StWC of Lagerstroemia indica varies regularly day and night during the growth cycle. Meanwhile, the rising time, valley time, and falling time of StWC were various at the different growth stages of Lagerstroemia indica. The results of correlation analysis between StWC and micro-environmental factors indicated that the StWC of Lagerstroemia indica was positively correlated with air relative humidity, while it was negatively correlated with total radiation and air temperature. The multiple regression equation of StWC and micro-environmental factors of Lagerstroemia indica was StWC = 11.789-1.402Rn-0.931T-1.132Ws+0.933RH-3.368ST+2.168SMC, and the coefficient of determination of the equation was of 0.87. Furthermore, the results illustrated that the irrigation should pay attention to supplementing irrigation in time during the peak growing season of fruit.


2014 ◽  
Vol 1073-1076 ◽  
pp. 619-627
Author(s):  
Fang She Yang ◽  
Shu Zhen Su ◽  
Juan Juan Zhang ◽  
Ci Fen Bi

In this paper, based on geostatistics and GIS techniques, spatial variation characteristics of soil organic matter (acronym: SOM) on a small scale were analyzed and discussed in east-one-branch gully (EG1) bed with the seabuckthorn flexible dam and the contrastive gully bed (which is non-vegetated any vegetation) located in zhun-ge-er county, Erdos, inner Mongolia, which belongs to the typical Pisha Sandstone area. The results show that the seabuckthorn can significantly increase SOM in the small catchment gully bed in the Pisha sandstone area, and the mean SOM content in gully bed with the seabuckthorn flexible dam is approximate 1.75 times that in the contrastive gully. Apparent spatial variation characteristics of SOM were found in the gully with the seabuckthorn flexible dam and the contrastive gully bed, moreover, the medium spatial autocorrelation of SOM was detected in gully bed with the seabuckthorn flexible dam, and the spatial variation of SOM was together led to by the structural and random variation at 1-6.5 m range, and of which the random variation accounts for 40%. Additional, the spatial autocorrelation of SOM in the contrastive gully bed is higher, the spatial variation of SOM was dominantly brought about by the structural variation at 1-4.5 m range, and of which the random variation accounts for 37%. Furthermore, the fractal dimension values reveal that dependence of SOM of the gully bed with the seabuckthorn flexible dam on spatial is weaker than that of the contrastive gully bed. It is judged that the seabuckthorn has an obvious effect on spatial distribution patterns and heterogeneity of SOM on a small scale.


2012 ◽  
Vol 599 ◽  
pp. 367-371
Author(s):  
Hua Guo ◽  
Chao Liu ◽  
Xi Ping Zhao ◽  
Yin Shan Wu

The concentration of CO2 and PM2.5 were monitored at XiaoYang barbecue bar of Jianshe west road in Xi’an. Then we analyze the daily variation characteristics of CO2 and PM2.5 concentration between peak hours of dining and the common hours. Using GBT18883-2002 and the United States national air quality, Air quality at XiaoYang barbecue bar is evaluated by the data from the monitoring, which shows that the air quality of some barbecue bar in Xi’an is not in accord with the national standard. Air pollution is serious. so much more attention should be paid.


2009 ◽  
Vol 328 (1-2) ◽  
pp. 495-505 ◽  
Author(s):  
Holger Brueck ◽  
Klaus Erdle ◽  
Yingzhi Gao ◽  
Marcus Giese ◽  
Ying Zhao ◽  
...  

2008 ◽  
Vol 51 (3) ◽  
pp. 263-270 ◽  
Author(s):  
WenHong Ma ◽  
YuanHe Yang ◽  
JinSheng He ◽  
Hui Zeng ◽  
JingYun Fang

PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e52180 ◽  
Author(s):  
Haiyan Ren ◽  
Philipp Schönbach ◽  
Hongwei Wan ◽  
Martin Gierus ◽  
Friedhelm Taube

2012 ◽  
Vol 9 (1) ◽  
pp. 1129-1159 ◽  
Author(s):  
Y. Kim ◽  
Y. Kodama

Abstract. Winter CO2 flux is an important element to assess when estimating the annual carbon budget on regional and global scales. However, winter observation frequency is limited due to the extreme cold weather in sub-Arctic and Arctic ecosystems. In this study, the continuous monitoring of winter CO2 flux in black spruce forest soil of interior Alaska was performed using NDIR CO2 sensors at 10, 20, and 30 cm above the soil surface during the snow-covered period (DOY 357 to 466) of 2006/2007. The atmospheric pressure was divided into four phases: >1000 hPa (HP: high pressure); 985<P<1000 (IP: intermediate pressure); <986 hPa (LP: low pressure); and a snow-melting period (MP); for the quantification of the effect of the environmental factors determining winter CO2 flux. The winter CO2 fluxes were 0.22 ± 0.02, 0.23 ± 0.02, 0.25 ± 0.03, and 0.17 ± 0.02 gCO2-C/m2 d−1 for the HP, IP, LP, and MP phases, respectively. Wintertime CO2 emission represents 20 % of the annual CO2 emissions in this boreal black spruce forest soil. Atmospheric temperature, pressure, and soil temperature correlate at levels of 56, 25, and 31 % to winter CO2 flux, respectively, during the snow-covered period of 2006/2007, when snow depth experienced one of its lowest totals of the past 80 years. Atmospheric temperature and soil temperature at 5 cm depth, modulated by atmospheric pressure, were found to be significant factors in determining winter CO2 emission and fluctuation in snowpack. Regional/global process-based carbon cycle models should be reassessed to account for the effect of winter CO2 emissions, regulated by temperature and soil latent-heat flux, in the snow-covered soils of Arctic and sub-Arctic terrestrial ecosystems of the Northern Hemisphere.


Sign in / Sign up

Export Citation Format

Share Document