scholarly journals Hijacking high-flux metabolic pathways to enhance product yield in metabolic engineering

2017 ◽  
Vol 47 (3) ◽  
pp. 262-270
Author(s):  
Yi ZHENG ◽  
Xin WANG ◽  
A. Zhipeng WANG ◽  
YanHe HUANG ◽  
JinShi LIN
mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
J. Andrew Jones ◽  
Victoria R. Vernacchio ◽  
Shannon M. Collins ◽  
Abhijit N. Shirke ◽  
Yu Xiu ◽  
...  

ABSTRACT Fermentation-based chemical production strategies provide a feasible route for the rapid, safe, and sustainable production of a wide variety of important chemical products, ranging from fuels to pharmaceuticals. These strategies have yet to find wide industrial utilization due to their inability to economically compete with traditional extraction and chemical production methods. Here, we engineer for the first time the complex microbial biosynthesis of an anthocyanin plant natural product, starting from sugar. This was accomplished through the development of a synthetic, 4-strain Escherichia coli polyculture collectively expressing 15 exogenous or modified pathway enzymes from diverse plants and other microbes. This synthetic consortium-based approach enables the functional expression and connection of lengthy pathways while effectively managing the accompanying metabolic burden. The de novo production of specific anthocyanin molecules, such as calistephin, has been an elusive metabolic engineering target for over a decade. The utilization of our polyculture strategy affords milligram-per-liter production titers. This study also lays the groundwork for significant advances in strain and process design toward the development of cost-competitive biochemical production hosts through nontraditional methodologies. IMPORTANCE To efficiently express active extensive recombinant pathways with high flux in microbial hosts requires careful balance and allocation of metabolic resources such as ATP, reducing equivalents, and malonyl coenzyme A (malonyl-CoA), as well as various other pathway-dependent cofactors and precursors. To address this issue, we report the design, characterization, and implementation of the first synthetic 4-strain polyculture. Division of the overexpression of 15 enzymes and transcription factors over 4 independent strain modules allowed for the division of metabolic burden and for independent strain optimization for module-specific metabolite needs. This study represents the most complex synthetic consortia constructed to date for metabolic engineering applications and provides a new paradigm in metabolic engineering for the reconstitution of extensive metabolic pathways in nonnative hosts. IMPORTANCE To efficiently express active extensive recombinant pathways with high flux in microbial hosts requires careful balance and allocation of metabolic resources such as ATP, reducing equivalents, and malonyl coenzyme A (malonyl-CoA), as well as various other pathway-dependent cofactors and precursors. To address this issue, we report the design, characterization, and implementation of the first synthetic 4-strain polyculture. Division of the overexpression of 15 enzymes and transcription factors over 4 independent strain modules allowed for the division of metabolic burden and for independent strain optimization for module-specific metabolite needs. This study represents the most complex synthetic consortia constructed to date for metabolic engineering applications and provides a new paradigm in metabolic engineering for the reconstitution of extensive metabolic pathways in nonnative hosts.


2015 ◽  
Vol 43 (6) ◽  
pp. 1140-1145 ◽  
Author(s):  
Oliver Hädicke ◽  
Steffen Klamt

Cofactor engineering has been long identified as a valuable tool for metabolic engineering. Besides interventions targeting the pools of redox cofactors, many studies addressed the adenosine pools of microorganisms. In this mini-review, we discuss interventions that manipulate the availability of ATP with a special focus on ATP wasting strategies. We discuss the importance to fine-tune the ATP yield along a production pathway to balance process performance parameters like product yield and volumetric productivity.


Author(s):  
Martina Newell-McGloughlin

This article focuses on the technological challenges in developing biotechnology and nutritionally enhanced crops. It discusses how the lack of basic knowledge about plant metabolism has hindered research on improving the nutritional quality of plants. It describes new technologies that seek to counter some of the complex problems in the metabolic engineering of pathways, overcome the limitation of single gene transfers, and facilitate the concomitant transfer of multiple components of metabolic pathways. Sample applications of these technologies are also discussed.


2011 ◽  
Vol 7 (2) ◽  
pp. 186-198 ◽  
Author(s):  
Yu-Sin Jang ◽  
Joungmin Lee ◽  
Alok Malaviya ◽  
Do Young Seung ◽  
Jung Hee Cho ◽  
...  

2017 ◽  
Vol 62 (2) ◽  
pp. 156 ◽  
Author(s):  
Aladár Vidra ◽  
Áron Németh

3-hydroxypropionic acid is a commercially valuable, important platform chemical. It can serve as a precursor for several key compound, such as acrylic acid, 1,3-propanediol, methyl acrylate, acrylamide, ethyl 3-HP, malonic acid, propiolactone and acrylonitrile. Several microorganisms can produce through a range of metabolic pathways. It is indispensable for the commercial production of 3-HP to use cheap and abundant substrates and also to produce in highly efficient processes which could result high yield, titer and productivity. Because  of the fact, that natural microorganism do not perform these conditions, metabolic engineering and genetically engineered microorganism are widely used for research and production as well. Several metabolic pathways are introduced to utilize glucose or glycerol for 3-HP production. In this overview naturally producer microorganisms, synthetic biochemical pathways, results from the recent years and recovery of 3-HP are detailed.


Author(s):  
Maheswara Reddy Mallu ◽  
Shaik Mohammad Anjum ◽  
Sai Sri Samyutha Katravulapalli ◽  
Sri Sai Priya Avuthu ◽  
Koteswara Reddy Gujjula ◽  
...  

Over the past decade, metabolic engineering has emerged as an active and distinct discipline characterized by its over-arching emphasis on integration. In practice, metabolic engineering is the directed improvement of cellular properties through the application of modern genetic methods. The concept of metabolic regulations deals with the varied and innumerable metabolic pathways that are present in the human body. A combination of such metabolic reactions paves the way to the proper functioning of different physiological and biological processes. Dealing with the adversities of a disease, engineering of novel metabolic pathways showcases the potential of metabolic engineering and its application in the therapeutic treatment of diseases. A proper and deeper understanding of the metabolic functions in the human body can be known from simulated yeast models. This review gives a brief understanding about the interactions between the molecular set of metabolome and its complexity.


2021 ◽  
Author(s):  
Daeyeol Ye ◽  
Myung Hyun Noh ◽  
Jo Hyun Moon ◽  
Alfonsina Milito ◽  
Minsun Kim ◽  
...  

Abstract Physical compartmentalization of metabolisms using membranous organelles in eukaryotes is helpful for chemical biosynthesis to ensure the availability of substrates from competitive metabolic reactions. Bacterial hosts lack such a membranous system, which is one of the major limitations for efficient metabolic engineering. Here, we introduced kinetic compartmentalization as an alternative strategy to enable substrate availability from competitive reactions. This method utilizes a non-natural biochemical reaction performed by an engineered enzyme to kinetically isolate the metabolic pathways and ensure substrate availability for the desired reaction. As a proof of concept, we could successfully demonstrate kinetic separation for efficient itaconate production from acetate in Escherichia coli, mimicking the native mitochondrial membrane system in Aspergillus species. Despite the utilization of the non-preferred carbon source, kinetic compartmentalization could lead to substantial increases of itaconate in both yield and titer, suggesting enough potential of our strategy for broad applications in diverse engineering.


TECHNOLOGY ◽  
2016 ◽  
Vol 04 (01) ◽  
pp. 9-14
Author(s):  
Justin R. Klesmith ◽  
Timothy A. Whitehead

A central challenge in the field of metabolic engineering is the efficient identification of a metabolic pathway genotype that maximizes specific productivity over a robust range of process conditions. Here we review current methods for optimizing specific productivity of metabolic pathways in living cells. New tools for library generation, computational analysis of pathway sequence-flux space, and high-throughput screening and selection techniques are discussed.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mobolaji Felicia Adegboye ◽  
Omena Bernard Ojuederie ◽  
Paola M. Talia ◽  
Olubukola Oluranti Babalola

AbstractThe issues of global warming, coupled with fossil fuel depletion, have undoubtedly led to renewed interest in other sources of commercial fuels. The search for renewable fuels has motivated research into the biological degradation of lignocellulosic biomass feedstock to produce biofuels such as bioethanol, biodiesel, and biohydrogen. The model strain for biofuel production needs the capability to utilize a high amount of substrate, transportation of sugar through fast and deregulated pathways, ability to tolerate inhibitory compounds and end products, and increased metabolic fluxes to produce an improved fermentation product. Engineering microbes might be a great approach to produce biofuel from lignocellulosic biomass by exploiting metabolic pathways economically. Metabolic engineering is an advanced technology for the construction of highly effective microbial cell factories and a key component for the next-generation bioeconomy. It has been extensively used to redirect the biosynthetic pathway to produce desired products in several native or engineered hosts. A wide range of novel compounds has been manufactured through engineering metabolic pathways or endogenous metabolism optimizations by metabolic engineers. This review is focused on the potential utilization of engineered strains to produce biofuel and gives prospects for improvement in metabolic engineering for new strain development using advanced technologies.


Sign in / Sign up

Export Citation Format

Share Document