Quantitative analysis and imaging of subsurface heterogeneities using spatially structured illumination

Author(s):  
Frederic Bevilacqua ◽  
David J. Cuccia ◽  
Anthony J. Durkin ◽  
Bruce J. Tromberg
Biomaterials ◽  
2020 ◽  
Vol 250 ◽  
pp. 120059 ◽  
Author(s):  
Qixin Chen ◽  
Xintian Shao ◽  
Mingang Hao ◽  
Hongbao Fang ◽  
Ruilin Guan ◽  
...  

Photonics ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 119
Author(s):  
Yiwei Chen ◽  
Zhenglong Sun ◽  
Yi He ◽  
Xin Zhang ◽  
Jing Wang ◽  
...  

Studying the architecture of nuclear lamina networks is significantly important in biomedicine owing not only to their influence on the genome, but also because they are associated with several diseases. To save labor and time, an automated method for nuclear lamina network recognition and quantitative analysis is proposed for use with lattice structured illumination super-resolution microscope images in this study. This method is based on a Gaussian mixture model and morphological processing. It includes steps for target region generation, bias field correction, image segmentation, network connection, meshwork generation, and meshwork analysis. The effectiveness of the proposed method was confirmed by recognizing and quantitatively analyzing nuclear lamina networks in five images that are presented to show the method’s performance. The experimental results show that our algorithm achieved high accuracy in nuclear lamina network recognition and quantitative analysis, and the median face areas size of lamina networks from U2OS osteosarcoma cells are 0.3184 μm2.


2018 ◽  
Author(s):  
Qixin Chen ◽  
Xintian Shao ◽  
Mingang Hao ◽  
Zhiqi Tian ◽  
Chenran Wang ◽  
...  

ABSTRACTSuper-resolution optical microscopy has extended the spatial resolution of cell biology from the cellular level to the nanoscale, enabling the observation of the interactive behavior of single mitochondria and lysosomes. Quantitative parametrization of interaction between mitochondria and lysosomes under super-resolution optical microscopy, however, is currently unavailable, which has severely limited our understanding of the molecular machinery underlying mitochondrial functionality. Here, we introduce an M-value to quantitatively investigate mitochondria and lysosome contact (MLC) and mitophagy under structured illumination microscopy. We found that the M-value for an MLC is typically less than 0.4, whereas in mitophagy it ranges from 0.5 to 1.0. This system permits further investigation of the detailed molecular mechanism governing the interactive behavior of mitochondria and lysosomes.


Author(s):  
J.P. Fallon ◽  
P.J. Gregory ◽  
C.J. Taylor

Quantitative image analysis systems have been used for several years in research and quality control applications in various fields including metallurgy and medicine. The technique has been applied as an extension of subjective microscopy to problems requiring quantitative results and which are amenable to automatic methods of interpretation.Feature extraction. In the most general sense, a feature can be defined as a portion of the image which differs in some consistent way from the background. A feature may be characterized by the density difference between itself and the background, by an edge gradient, or by the spatial frequency content (texture) within its boundaries. The task of feature extraction includes recognition of features and encoding of the associated information for quantitative analysis.Quantitative Analysis. Quantitative analysis is the determination of one or more physical measurements of each feature. These measurements may be straightforward ones such as area, length, or perimeter, or more complex stereological measurements such as convex perimeter or Feret's diameter.


Author(s):  
V. V. Damiano ◽  
R. P. Daniele ◽  
H. T. Tucker ◽  
J. H. Dauber

An important example of intracellular particles is encountered in silicosis where alveolar macrophages ingest inspired silica particles. The quantitation of the silica uptake by these cells may be a potentially useful method for monitoring silica exposure. Accurate quantitative analysis of ingested silica by phagocytic cells is difficult because the particles are frequently small, irregularly shaped and cannot be visualized within the cells. Semiquantitative methods which make use of particles of known size, shape and composition as calibration standards may be the most direct and simplest approach to undertake. The present paper describes an empirical method in which glass microspheres were used as a model to show how the ratio of the silicon Kα peak X-ray intensity from the microspheres to that of a bulk sample of the same composition correlated to the mass of the microsphere contained within the cell. Irregular shaped silica particles were also analyzed and a calibration curve was generated from these data.


Author(s):  
H.J. Dudek

The chemical inhomogenities in modern materials such as fibers, phases and inclusions, often have diameters in the region of one micrometer. Using electron microbeam analysis for the determination of the element concentrations one has to know the smallest possible diameter of such regions for a given accuracy of the quantitative analysis.In th is paper the correction procedure for the quantitative electron microbeam analysis is extended to a spacial problem to determine the smallest possible measurements of a cylindrical particle P of high D (depth resolution) and diameter L (lateral resolution) embeded in a matrix M and which has to be analysed quantitative with the accuracy q. The mathematical accounts lead to the following form of the characteristic x-ray intens ity of the element i of a particle P embeded in the matrix M in relation to the intensity of a standard S


Author(s):  
John A. Hunt

Spectrum-imaging is a useful technique for comparing different processing methods on very large data sets which are identical for each method. This paper is concerned with comparing methods of electron energy-loss spectroscopy (EELS) quantitative analysis on the Al-Li system. The spectrum-image analyzed here was obtained from an Al-10at%Li foil aged to produce δ' precipitates that can span the foil thickness. Two 1024 channel EELS spectra offset in energy by 1 eV were recorded and stored at each pixel in the 80x80 spectrum-image (25 Mbytes). An energy range of 39-89eV (20 channels/eV) are represented. During processing the spectra are either subtracted to create an artifact corrected difference spectrum, or the energy offset is numerically removed and the spectra are added to create a normal spectrum. The spectrum-images are processed into 2D floating-point images using methods and software described in [1].


Author(s):  
Delbert E. Philpott ◽  
David Leaffer

There are certain advantages for electron probe analysis if the sample can be tilted directly towards the detector. The count rate is higher, it optimizes the geometry since only one angle need be taken into account for quantitative analysis and the signal to background ratio is improved. The need for less tilt angle may be an advantage because the grid bars are not moved quite as close to each other, leaving a little more open area for observation. Our present detector (EDAX) and microscope (Philips 300) combination precludes moving the detector behind the microscope where it would point directly at the grid. Therefore, the angle of the specimen was changed in order to optimize the geometry between the specimen and the detector.


Author(s):  
Conly L. Rieder

The behavior of many cellular components, and their dynamic interactions, can be characterized in the living cell with considerable spatial and temporal resolution by video-enhanced light microscopy (video-LM). Indeed, under the appropriate conditions video-LM can be used to determine the real-time behavior of organelles ≤ 25-nm in diameter (e.g., individual microtubules—see). However, when pushed to its limit the structures and components observed within the cell by video-LM cannot be resolved nor necessarily even identified, only detected. Positive identification and a quantitative analysis often requires the corresponding electron microcopy (EM).


Sign in / Sign up

Export Citation Format

Share Document