scholarly journals Deep learning reconstruction of ultrashort pulses from 2D spatial intensity patterns recorded by an all-in-line system in a single-shot

2020 ◽  
Vol 28 (5) ◽  
pp. 7528 ◽  
Author(s):  
Ron Ziv ◽  
Alex Dikopoltsev ◽  
Tom Zahavy ◽  
Ittai Rubinstein ◽  
Pavel Sidorenko ◽  
...  
Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1718
Author(s):  
Chien-Hsing Chou ◽  
Yu-Sheng Su ◽  
Che-Ju Hsu ◽  
Kong-Chang Lee ◽  
Ping-Hsuan Han

In this study, we designed a four-dimensional (4D) audiovisual entertainment system called Sense. This system comprises a scene recognition system and hardware modules that provide haptic sensations for users when they watch movies and animations at home. In the scene recognition system, we used Google Cloud Vision to detect common scene elements in a video, such as fire, explosions, wind, and rain, and further determine whether the scene depicts hot weather, rain, or snow. Additionally, for animated videos, we applied deep learning with a single shot multibox detector to detect whether the animated video contained scenes of fire-related objects. The hardware module was designed to provide six types of haptic sensations set as line-symmetry to provide a better user experience. After the system considers the results of object detection via the scene recognition system, the system generates corresponding haptic sensations. The system integrates deep learning, auditory signals, and haptic sensations to provide an enhanced viewing experience.


Author(s):  
Limu Chen ◽  
Ye Xia ◽  
Dexiong Pan ◽  
Chengbin Wang

<p>Deep-learning based navigational object detection is discussed with respect to active monitoring system for anti-collision between vessel and bridge. Motion based object detection method widely used in existing anti-collision monitoring systems is incompetent in dealing with complicated and changeable waterway for its limitations in accuracy, robustness and efficiency. The video surveillance system proposed contains six modules, including image acquisition, detection, tracking, prediction, risk evaluation and decision-making, and the detection module is discussed in detail. A vessel-exclusive dataset with tons of image samples is established for neural network training and a SSD (Single Shot MultiBox Detector) based object detection model with both universality and pertinence is generated attributing to tactics of sample filtering, data augmentation and large-scale optimization, which make it capable of stable and intelligent vessel detection. Comparison results with conventional methods indicate that the proposed deep-learning method shows remarkable advantages in robustness, accuracy, efficiency and intelligence. In-situ test is carried out at Songpu Bridge in Shanghai, and the results illustrate that the method is qualified for long-term monitoring and providing information support for further analysis and decision making.</p>


2020 ◽  
Vol 10 (23) ◽  
pp. 8625
Author(s):  
Yali Song ◽  
Yinghong Wen

In the positioning process of a high-speed train, cumulative error may result in a reduction in the positioning accuracy. The assisted positioning technology based on kilometer posts can be used as an effective method to correct the cumulative error. However, the traditional detection method of kilometer posts is time-consuming and complex, which greatly affects the correction efficiency. Therefore, in this paper, a kilometer post detection model based on deep learning is proposed. Firstly, the Deep Convolutional Generative Adversarial Networks (DCGAN) algorithm is introduced to construct an effective kilometer post data set. This greatly reduces the cost of real data acquisition and provides a prerequisite for the construction of the detection model. Then, by using the existing optimization as a reference and further simplifying the design of the Single Shot multibox Detector (SSD) model according to the specific application scenario of this paper, the kilometer post detection model based on an improved SSD algorithm is established. Finally, from the analysis of the experimental results, we know that the detection model established in this paper ensures both detection accuracy and efficiency. The accuracy of our model reached 98.92%, while the detection time was only 35.43 ms. Thus, our model realizes the rapid and accurate detection of kilometer posts and improves the assisted positioning technology based on kilometer posts by optimizing the detection method.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Peng Liu ◽  
Xiangxiang Li ◽  
Haiting Cui ◽  
Shanshan Li ◽  
Yafei Yuan

Hand gesture recognition is an intuitive and effective way for humans to interact with a computer due to its high processing speed and recognition accuracy. This paper proposes a novel approach to identify hand gestures in complex scenes by the Single-Shot Multibox Detector (SSD) deep learning algorithm with 19 layers of a neural network. A benchmark database with gestures is used, and general hand gestures in the complex scene are chosen as the processing objects. A real-time hand gesture recognition system based on the SSD algorithm is constructed and tested. The experimental results show that the algorithm quickly identifies humans’ hands and accurately distinguishes different types of gestures. Furthermore, the maximum accuracy is 99.2%, which is significantly important for human-computer interaction application.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 583 ◽  
Author(s):  
Khang Nguyen ◽  
Nhut T. Huynh ◽  
Phat C. Nguyen ◽  
Khanh-Duy Nguyen ◽  
Nguyen D. Vo ◽  
...  

Unmanned aircraft systems or drones enable us to record or capture many scenes from the bird’s-eye view and they have been fast deployed to a wide range of practical domains, i.e., agriculture, aerial photography, fast delivery and surveillance. Object detection task is one of the core steps in understanding videos collected from the drones. However, this task is very challenging due to the unconstrained viewpoints and low resolution of captured videos. While deep-learning modern object detectors have recently achieved great success in general benchmarks, i.e., PASCAL-VOC and MS-COCO, the robustness of these detectors on aerial images captured by drones is not well studied. In this paper, we present an evaluation of state-of-the-art deep-learning detectors including Faster R-CNN (Faster Regional CNN), RFCN (Region-based Fully Convolutional Networks), SNIPER (Scale Normalization for Image Pyramids with Efficient Resampling), Single-Shot Detector (SSD), YOLO (You Only Look Once), RetinaNet, and CenterNet for the object detection in videos captured by drones. We conduct experiments on VisDrone2019 dataset which contains 96 videos with 39,988 annotated frames and provide insights into efficient object detectors for aerial images.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2699 ◽  
Author(s):  
Redhwan Algabri ◽  
Mun-Taek Choi

Human following is one of the fundamental functions in human–robot interaction for mobile robots. This paper shows a novel framework with state-machine control in which the robot tracks the target person in occlusion and illumination changes, as well as navigates with obstacle avoidance while following the target to the destination. People are detected and tracked using a deep learning algorithm, called Single Shot MultiBox Detector, and the target person is identified by extracting the color feature using the hue-saturation-value histogram. The robot follows the target safely to the destination using a simultaneous localization and mapping algorithm with the LIDAR sensor for obstacle avoidance. We performed intensive experiments on our human following approach in an indoor environment with multiple people and moderate illumination changes. Experimental results indicated that the robot followed the target well to the destination, showing the effectiveness and practicability of our proposed system in the given environment.


Sign in / Sign up

Export Citation Format

Share Document