X-Ray Fluorescence Determination of Composition and Thickness of Nickel—Iron—Cobalt Thin Films: Application of Solution Techniques

1967 ◽  
Vol 21 (5) ◽  
pp. 286-290 ◽  
Author(s):  
E. P. Cocozza ◽  
A. Ferguson

In computer-memory technology, it is important to know the composition and thickness of nickel—iron—cobalt thin films. These parameters affect the magnetic properties of the films and must be determined accurately for evaluation purposes. An x-ray fluorescence procedure was used in this work. Nickel—iron—cobalt thin-film standards were developed by a solution technique. Thin films in the approximate composition range of 79% Ni, 18% Fe, and 3% Co and thickness range of 600–1300 Å were analyzed. Precision of the thin-film compositional analysis yields coefficients of variation of ±0.02% for Ni, ±0.12% for Fe, and ±0.43% for Co. Accuracy is 0.04% for Ni, and 0.17% for Fe, and 0.34% for Co. Precision of the thickness measurement yields a coefficient of variation of ± 0.2%. Accuracy, checked against optical interferometric data, is ±10 to 20 Å (∼1%–2% at the 1000-Å level).

1985 ◽  
Vol 48 ◽  
Author(s):  
Klara Kiss ◽  
Paul M. Figura

An energy dispersive X-ray microprobe (EDX) analysis was developed to determine simultaneously the lateral uniformity of the thickness and the composition of thin potassium polyphosphide(KPx) films. The EDX analysis was based on theoretical calibration curves generated by the Monte Carlo simulation approach developed by Kyser and Murata and extended by Miller and Koffman. Simultaneous determination of both composition and thickness was possible for this binary-element thin film due to the concentration independence of the theoretical intensity ratio ofThe EDX results were compared to macro techniques applied routinely in the characterization of thin films, i.e., piezoelectric thickness measurement and compositional analysis via X-ray fluorescence spectroscopy (XRF). A special XRF technique was developed to determine the weight ratios from fluorescent intensity measurements “directly” using “bulk” standards instead of thin film standards. The accuracy of this technique was demonstrated for an indium phosphide standard film since no certified KPx standard films are available.The comparison was carried out on films of widely different thicknesses (0.26–2.0 um) and compositions (KP5–KP83). A Student's t test demonstrated that the compared techniques were identical at the 95% confidence level for the determinations of both thickness and composition. Thus, EDX analysis can be used to complement the macro techniques when the lateral uniformity of the thin films is to be determined at the micron scale.


2014 ◽  
Vol 915-916 ◽  
pp. 833-837
Author(s):  
Jiang Wei Fan ◽  
Xiao Gang Han ◽  
Feng Wang

Ultra-thin films of SiO2 (nominally 2, 4, 6, 8 and 10nm thick) on silicon, prepared by thermal oxidation, were investigated using x-ray photoelectron spectroscopy (XPS). The thickness of these thin films was obtained from a measurement of the photoelectron intensities originating from the substrate and the oxide layers by applying an appropriate quantitative model. The uncertainty budget of that thickness measurement method is given. The effective attenuation lengths or the corresponding electron inelastic mean free paths are of the most importance in the contribution of the uncertainties. For the SiO2 ultra-thin film with the nominal thickness of 2nm, it could generate 20% of the uncertainty.


Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
R. J. Baird

The epitaxially grown (GaAs)Ge thin film has been arousing much interest because it is one of metastable alloys of III-V compound semiconductors with germanium and a possible candidate in optoelectronic applications. It is important to be able to accurately determine the composition of the film, particularly whether or not the GaAs component is in stoichiometry, but x-ray energy dispersive analysis (EDS) cannot meet this need. The thickness of the film is usually about 0.5-1.5 μm. If Kα peaks are used for quantification, the accelerating voltage must be more than 10 kV in order for these peaks to be excited. Under this voltage, the generation depth of x-ray photons approaches 1 μm, as evidenced by a Monte Carlo simulation and actual x-ray intensity measurement as discussed below. If a lower voltage is used to reduce the generation depth, their L peaks have to be used. But these L peaks actually are merged as one big hump simply because the atomic numbers of these three elements are relatively small and close together, and the EDS energy resolution is limited.


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


Author(s):  
Jonathan Ogle ◽  
Daniel Powell ◽  
Eric Amerling ◽  
Detlef Matthias Smilgies ◽  
Luisa Whittaker-Brooks

<p>Thin film materials have become increasingly complex in morphological and structural design. When characterizing the structure of these films, a crucial field of study is the role that crystallite orientation plays in giving rise to unique electronic properties. It is therefore important to have a comparative tool for understanding differences in crystallite orientation within a thin film, and also the ability to compare the structural orientation between different thin films. Herein, we designed a new method dubbed the mosaicity factor (MF) to quantify crystallite orientation in thin films using grazing incidence wide-angle X-ray scattering (GIWAXS) patterns. This method for quantifying the orientation of thin films overcomes many limitations inherent in previous approaches such as noise sensitivity, the ability to compare orientation distributions along different axes, and the ability to quantify multiple crystallite orientations observed within the same Miller index. Following the presentation of MF, we proceed to discussing case studies to show the efficacy and range of application available for the use of MF. These studies show how using the MF approach yields quantitative orientation information for various materials assembled on a substrate.<b></b></p>


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Ahmad Al-Sarraj ◽  
Khaled M. Saoud ◽  
Abdelaziz Elmel ◽  
Said Mansour ◽  
Yousef Haik

Abstract In this paper, we report oxidation time effect on highly porous silver oxide nanowires thin films fabricated using ultrasonic spray pyrolysis and oxygen plasma etching method. The NW’s morphological, electrical, and optical properties were investigated under different plasma etching periods and the number of deposition cycles. The increase of plasma etching and oxidation time increases the surface roughness of the Ag NWs until it fused to form a porous thin film of silver oxide. AgNWs based thin films were characterized using X-ray diffraction, scanning electron microscope, transmission electron microscope, X-ray photoemission spectroscopy, and UV–Vis spectroscopy techniques. The obtained results indicate the formation of mixed mesoporous Ag2O and AgO NW thin films. The Ag2O phase of silver oxide appears after 300 s of oxidation under the same conditions, while the optical transparency of the thin film decreases as plasma etching time increases. The sheet resistance of the final film is influenced by the oxidation time and the plasma application periodicity. Graphic abstract


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 478
Author(s):  
Wan Mohd Ebtisyam Mustaqim Mohd Daniyal ◽  
Yap Wing Fen ◽  
Silvan Saleviter ◽  
Narong Chanlek ◽  
Hideki Nakajima ◽  
...  

In this study, X-ray photoelectron spectroscopy (XPS) was used to study chitosan–graphene oxide (chitosan–GO) incorporated with 4-(2-pyridylazo)resorcinol (PAR) and cadmium sulfide quantum dot (CdS QD) composite thin films for the potential optical sensing of cobalt ions (Co2+). From the XPS results, it was confirmed that carbon, oxygen, and nitrogen elements existed on the PAR–chitosan–GO thin film, while for CdS QD–chitosan–GO, the existence of carbon, oxygen, cadmium, nitrogen, and sulfur were confirmed. Further deconvolution of each element using the Gaussian–Lorentzian curve fitting program revealed the sub-peak component of each element and hence the corresponding functional group was identified. Next, investigation using surface plasmon resonance (SPR) optical sensor proved that both chitosan–GO-based thin films were able to detect Co2+ as low as 0.01 ppm for both composite thin films, while the PAR had the higher binding affinity. The interaction of the Co2+ with the thin films was characterized again using XPS to confirm the functional group involved during the reaction. The XPS results proved that primary amino in the PAR–chitosan–GO thin film contributed more important role for the reaction with Co2+, as in agreement with the SPR results.


RSC Advances ◽  
2018 ◽  
Vol 8 (37) ◽  
pp. 20990-20995 ◽  
Author(s):  
Xiang Yang ◽  
Shu Jiang ◽  
Jun Li ◽  
Jian-Hua Zhang ◽  
Xi-Feng Li

In this paper, W-doped ZnSnO (WZTO) thin films and TFT devices are successfully fabricated by a wet-solution technique.


MRS Advances ◽  
2016 ◽  
Vol 1 (39) ◽  
pp. 2711-2716 ◽  
Author(s):  
V. Vasilyev ◽  
J. Cetnar ◽  
B. Claflin ◽  
G. Grzybowski ◽  
K. Leedy ◽  
...  

ABSTRACTAlN thin film structures have many useful and practical piezoelectric and pyroelectric properties. The potential enhancement of the AlN piezo- and pyroelectric constants allows it to compete with more commonly used materials. For example, combination of AlN with ScN leads to new structural, electronic, and mechanical characteristics, which have been reported to substantially enhance the piezoelectric coefficients in solid-solution AlN-ScN compounds, compared to a pure AlN-phase material.In our work, we demonstrate that an analogous alloying approach results in considerable enhancement of the pyroelectric properties of AlN - ScN composites. Thin films of ScN, AlN and Al1-x ScxN (x = 0 – 1.0) were deposited on silicon (004) substrates using dual reactive sputtering in Ar/N2 atmosphere from Sc and Al targets. The deposited films were studied and compared using x-ray diffraction, XPS, SEM, and pyroelectric characterization. An up to 25% enhancement was observed in the pyroelectric coefficient (Pc = 0.9 µC /m2K) for Sc1-xAlxN thin films structures in comparison to pure AlN thin films (Pc = 0.71 µC/m2K). The obtained results suggest that Al1-x ScxN films could be a promising novel pyroelectric material and might be suitable for use in uncooled IR detectors.


1988 ◽  
Vol 66 (5) ◽  
pp. 373-375 ◽  
Author(s):  
C. J. Arsenault ◽  
D. E. Brodie

Zn-rich and P-rich amorphous Zn3P2 thin films were prepared by co-evaporation of the excess element during the normal Zn3P2 deposition. X-ray diffraction techniques were used to investigate the structural properties and the crystallization process. Agglomeration of the excess element within the as-made amorphous Zn3P2 thin film accounted for the structural properties observed after annealing the sample. Electrical measurements showed that excess Zn reduces the conductivity activation energy and increases the conductivity, while excess P up to 15 at.% does not alter the electrical properties significantly.


Sign in / Sign up

Export Citation Format

Share Document