Infrared Analysis of Particulates by FT-IR Emission/Transmission Spectroscopy

1986 ◽  
Vol 40 (6) ◽  
pp. 746-759 ◽  
Author(s):  
Peter R. Solomon ◽  
Robert M. Carangelo ◽  
David G. Hamblen ◽  
Philip E. Best

In this paper we report on a new method for the on-line chemical characterization of gas-suspended particulate and liquid droplet streams. The method is a combination of emission and transmission (E/T) spectroscopy performed using a Fourier transform infrared (FT-IR) spectrometer and a cell which allows analysis of room-temperature particulates surrounded by hot walls. The method was based on the discovery that the spectrum of radiation coming from such particles contained structure corresponding to the infrared absorption spectrum of the particulates. It was determined that the observed energy was wall radiation which reaches the detector after refraction by, and transmission through the particles. The shape of the observed spectrum relative to that of the wall spectrum is reduced at the absorption bands of the particulates. The general concepts of the E/T method were validated by samples with sizes varying from a few to several hundred microns with varying optical properties. For solids, excellent results were achieved for composition measurements. For a sample of known particle size, quantitative absorbance spectra were obtained from the E/T spectra with the use of a model based on ray optics. The spectra were in good quantitative agreement with absorbance spectra derived by the KBr pellet method for the same sample thickness. The E/T derived spectra were somewhat noisier than the KBr pellet spectra, but were free of Christiansen effect band distortions and scattering contributions. The E/T method has the additional advantage of requiring little or no sample preparation.

1986 ◽  
Vol 40 (5) ◽  
pp. 636-641 ◽  
Author(s):  
P. G. Varlashkin ◽  
M. J. D. Low ◽  
G. A. Parodi ◽  
C. Morterra

FT-IR photoacoustic (PA) and also photothermal beam deflection (PBD) spectra were recorded with the same particulate samples (graphite, charcoal, aspirin, and silica) under the same conditions in order to compare the quality of the spectra obtainable with the two techniques. A PA cell fitted with windows for the PBD laser probe beam was used, and PA and PBD spectra of each sample were recorded at 8 cm−1 resolution at each of the four different interferometer scan velocities. Although the overall aspects of FT-IR/PA and FT-IR/PBD spectra are the same, the signal-to-noise ratios of PA spectra are appreciably better than those of PBD spectra because PBD detection is more prone to disturbance by vibration than is PA detection. Absorption bands appear at the same wavenumbers in PA and PBD spectra. However, the relative intensities of bands of PBD spectra depend on the absorptive properties of the powdered solids; with weak absorbers, some bands may not be detected at all. PAS can be used with all powders. PBDS is of little or no use for the examination of weakly absorbing powders unless they scatter IR radiation extensively.


2021 ◽  
pp. 889-896
Author(s):  
Hanan J. Mustafa ◽  
Tagreed M. Al-Saadi

To study the removal of lead (Pb) ions from aqueous solutions, novel magnetite nanoparticles (NPs) of Ni0.31Mg0.15Ag0.04Fe2.5O4 were synthesized by coprecipitation synthesis using metal sulfates, and then coated with Gum Arabic (GA). The prepared NPs were analyzed using various spectroscopic and analytical methods, such as X-Ray diffraction analysis (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray spectroscopy (EDX), Fourier Transform Infra-Red spectroscopy (FT-IR), and Atomic Absorption Spectrophotometer (AAS). By using XRD analysis, the cubic inverse spinel structure of the prepared NPs was proven, showing average values of crystallite size, lattice constant, and density of 28.57nm, 8.32582Å, and 5.2890 g/cm3, respectively. FE-SEM analysis revealed the sphere-like shape of the nanoparticles with a measured crystallite size of 25.93nm. The existence of constituent elements was evidenced by EDX. FT-IR test proved the success of the coating process of magnetite NPs by the presence of the main characteristic absorption bands of GA in the FT-IR spectrum of GA-magnetite NPs. The adsorption of Pb ions by GA- magnetite NPs was shown by AAS analysis, where the concentration of Pb ions decreased from 25ppm to 6.6ppm, reaching 1.1ppm at the time of 25min. The porosity of the NPs and the carboxyl groups in GA played an important role in the process.


2022 ◽  
Author(s):  
Monika Patel ◽  
Sunita Mishra ◽  
Ruchi Verma ◽  
Deep Shikha

Abstract Nanotechnology is a completely unique branch of technology that offers with substances in a very small size between (1-100 nm) with various crystal shapes which include spherical nanoparticles, flower shaped, Nano rods, Nano ribbons, and Nano platelets. Metals have ability to produce large number of oxides. These metal oxides play an major role in many areas of chemistry, physics, material science and food science. In this research, Zinc Oxide (ZnO) and Copper (II) oxide nanoparticles were synthesized via sol-gel process using zinc nitrate and copper (II) nitrate as precursor respectively. The characterization of CuO and ZnO nanoparticles was done by using various techniques. X-ray Diffraction (XRD) indicates the crystallinity and crystal size of CuO and ZnO nanoparticle. Fourier transform infrared spectroscopy (FT-IR) was used to get the infrared spectrum of the sample indicating composition of the sample which contains various functional groups. XRD result shows the particle size of CuO at highest peak 29.40140 was 61.25 nm and the particle size of ZnO at highest peak 36.24760 was 21.82 nm. FT-IR spectra peak at 594.56 cm-1 indicated characteristic absorption bands of ZnO nanoparticles and the broad band peak at 3506.9 cm-1 can be attributed to the characteristic absorption of O-H group. The analysis of FT-IR spectrum of CuO shows peaks at 602.09, 678.39, and 730.19cm−1 which refer to the formation of CuO. A broad absorption peak noticed at 3308.2 cm−1 attributed to O–H stretching of the moisture content.


2019 ◽  
Vol 20 (1) ◽  
pp. 16 ◽  
Author(s):  
Duha Hussien Attol ◽  
Hayder Hamied Mihsen

Rice husk ash (RHA) was used to prepare sodium silicate, which in turn was functionalized with 3-(chloropropyl)triethoxysilane employing the sol-gel technique to form RHACCl. Chloro group in RHACCl was replaced with iodo group forming RHACI. Ethylenediamine was immobilized on RHACI in order to prepare it for the reaction with salicylaldehyde to form a silica derivative-salen. FT-IR analysis indicated the presence of secondary amine and –NH and C=N absorption bands. XRD analysis revealed the occurrence of the broad diffused peak with maximum intensity at 22–23° (2θ). BET measurements showed also that the surface area of the prepared compound is 274.55 m2/g. Elemental analysis proved the existence of nitrogen in the structure of the prepared compound. The silica derivative-salen showed high potential for extraction and removal of heavy contaminating metal ions Ni(II), Cu(II), and Co(II) from aqueous solutions. The kinetic study demonstrates that the adsorption of the metal ions follows the pseudo-second order.


1994 ◽  
Vol 2 (2) ◽  
pp. 59-65 ◽  
Author(s):  
J. Todd Kuenstner ◽  
Karl H. Norris

Absorbance and first and second derivative absorbance spectra and quarter-millimolar absorptivity coefficients for hemoglobin species including oxy-, deoxy-, carboxy- and methemoglobin in the visible and in the near infrared regions from 620 nm to 2500 nm are presented. At wavelengths longer than 1500 nm, the absorbance and second derivative absorbance spectra of hemoglobin species are similar for all of the species. Absorption bands are present centred at 1690, 1740, 2056, 2170, 2290 and 2350 nm.


2021 ◽  
Author(s):  
Raji P ◽  
K Balachandra Kumar

Abstract Ti - doped ZnO (TixZn1-xO x= 0.00, 0.05, 0.10, 0.15) nanoparticles have been synthesized through co - precipitation approach. X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), UV-Visible spectroscopy, and Vibrating Sample Magnetometer (VSM) have been used to characterize the samples. X-Ray Diffraction (XRD) analysis manifested the hexagonal wurtzite structure. The crystallite size decreased from 37 ​nm to 29 ​nm as dopant concentration is increased. Fourier transform infrared analysis showed the absorption bands of ZnO, with few within the intensities. SEM investigation showed the irregular shape and agglomeration of the particles. Ti, Zn, and O composition were determined from EDX analysis and confirmed the purity of the samples.PL spectra showed a near band edge emission and visible emission.Vibrating sample magnetometer (VSM) demonstrated pure and doped samples exhibited ferromagnetism behavior at room temperature.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1684 ◽  
Author(s):  
Mirosława Prochoń ◽  
Anna Marzec ◽  
Bolesław Szadkowski

The purpose of this work was to prepare new biodegradable starch-cellulose composites, with starch, using casein and gelatin as natural nutrients. The physico-chemical properties of the starch films and cellulose fabrics with starch coatings were studied by Fourier transformation infrared analysis, laser confocal scanning microscopy (LCSM), scanning electron microscopy (SEM), UV-Vis spectroscopy, swelling tests, mechanical tests, thermal analysis thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The susceptibility of the starch films to biodegradation was investigated, together with their resistance to thermo-oxidative aging. As a result of the formation of the starch films, both the casein and gelatin macromolecules were able to interact directly with the starch matrix and the fractions of unbranched amylose and branched amylopectin it contained. This interaction was visible as changes in the absorption bands of the polar groups, as revealed by infrared analysis. Spectral analysis of the cellulose fabrics coated with starch films suggests that hydrogen bridges formed between the micelles of long cellulose filaments and the micro and macro-fibers of the starch pectins. An applicative test revealed that when used as a covering for bean cultivation the cellulose-starch composites act as a fertilizing component, contributing to significantly improved growth of Phaseolus vulgaris in comparison to the use of unmodified cellulose.


2016 ◽  
Vol 9 (7) ◽  
pp. 3429-3454 ◽  
Author(s):  
Satoshi Takahama ◽  
Giulia Ruggeri ◽  
Ann M. Dillner

Abstract. Various vibrational modes present in molecular mixtures of laboratory and atmospheric aerosols give rise to complex Fourier transform infrared (FT-IR) absorption spectra. Such spectra can be chemically informative, but they often require sophisticated algorithms for quantitative characterization of aerosol composition. Naïve statistical calibration models developed for quantification employ the full suite of wavenumbers available from a set of spectra, leading to loss of mechanistic interpretation between chemical composition and the resulting changes in absorption patterns that underpin their predictive capability. Using sparse representations of the same set of spectra, alternative calibration models can be built in which only a select group of absorption bands are used to make quantitative prediction of various aerosol properties. Such models are desirable as they allow us to relate predicted properties to their underlying molecular structure. In this work, we present an evaluation of four algorithms for achieving sparsity in FT-IR spectroscopy calibration models. Sparse calibration models exclude unnecessary wavenumbers from infrared spectra during the model building process, permitting identification and evaluation of the most relevant vibrational modes of molecules in complex aerosol mixtures required to make quantitative predictions of various measures of aerosol composition. We study two types of models: one which predicts alcohol COH, carboxylic COH, alkane CH, and carbonyl CO functional group (FG) abundances in ambient samples based on laboratory calibration standards and another which predicts thermal optical reflectance (TOR) organic carbon (OC) and elemental carbon (EC) mass in new ambient samples by direct calibration of infrared spectra to a set of ambient samples reserved for calibration. We describe the development and selection of each calibration model and evaluate the effect of sparsity on prediction performance. Finally, we ascribe interpretation to absorption bands used in quantitative prediction of FGs and TOR OC and EC concentrations.


2019 ◽  
Vol 73 (5) ◽  
pp. 520-528 ◽  
Author(s):  
Kevin J. Major ◽  
Thomas C. Hutchens ◽  
Christopher R. Wilson ◽  
Menelaos K. Poutous ◽  
Ishwar D. Aggarwal ◽  
...  

This paper describes the application of a human color vision approach to infrared (IR) chemical sensing for the discrimination between multiple explosive materials deposited on aluminum substrates. This methodology classifies chemicals using the unique response of the chemical vibrational absorption bands to three broadband overlapping IR optical filters. For this effort, Fourier transform infrared (FT-IR) spectroscopy is first used to computationally examine the ability of the human color vision sensing approach to discriminate between three similar explosive materials, 1,3,5,-Trinitro-1,3,5-triazinane (RDX), 2,2-Bis[(nitrooxy)methyl]propane-1,3,-diyldinitrate (PETN), and 1,3,5,7-Tetranitro-1,3,5,7-tetrazocane (HMX). A description of a laboratory breadboard optical sensor designed for this approach is then provided, along with the discrimination results collected for these samples using this sensor. The results of these studies demonstrate that the human color vision approach is capable of high-confidence discrimination of the examined explosive materials.


Sign in / Sign up

Export Citation Format

Share Document