scholarly journals Predicting novel candidate human obesity genes and their site of action by systematic functional screening in Drosophila

PLoS Biology ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. e3001255
Author(s):  
Neha Agrawal ◽  
Katherine Lawler ◽  
Catherine M. Davidson ◽  
Julia M. Keogh ◽  
Robert Legg ◽  
...  

The discovery of human obesity-associated genes can reveal new mechanisms to target for weight loss therapy. Genetic studies of obese individuals and the analysis of rare genetic variants can identify novel obesity-associated genes. However, establishing a functional relationship between these candidate genes and adiposity remains a significant challenge. We uncovered a large number of rare homozygous gene variants by exome sequencing of severely obese children, including those from consanguineous families. By assessing the function of these genes in vivo in Drosophila, we identified 4 genes, not previously linked to human obesity, that regulate adiposity (itpr, dachsous, calpA, and sdk). Dachsous is a transmembrane protein upstream of the Hippo signalling pathway. We found that 3 further members of the Hippo pathway, fat, four-jointed, and hippo, also regulate adiposity and that they act in neurons, rather than in adipose tissue (fat body). Screening Hippo pathway genes in larger human cohorts revealed rare variants in TAOK2 associated with human obesity. Knockdown of Drosophila tao increased adiposity in vivo demonstrating the strength of our approach in predicting novel human obesity genes and signalling pathways and their site of action.


1972 ◽  
Vol 27 (01) ◽  
pp. 063-071
Author(s):  
S. G Iatridis ◽  
P. G Iatridis

SummaryThe present investigation deals with in vivo studies of possible relations of active Hageman factor (HFa) to the problems of thrombolysis. The study is based upon animal experimentation in which 40 normal, 5 dicumarolized and 5 heparinized rabbits each received ellagic acid (Elac 10-2 M) by intravenous continuous infusion at a rate of 1 ml/min for a period of 25 min. The data suggest that the Elac infusion induced in vivo activation of HF. Streptokinase (SK) injection 25 min from the start of Elac i. v. infusion failed to induce clot lysis in blood drawn one min after its injection. The phenomenon was more prominent with low (SK 250 U or 500 U) concentrations of SK. With higher concentrations, SK-induced clot lysis activity was not affected by Elac infusion.In dicumarolized and heparinized rabbits Elac infusion still counteracted the fibrinolysis activating effect of low concentration of SK. The possibility that the above described phenomenon was due to either hypercoagulability or to a non-specific inhibitory effect of Elac upon SK was explored and excluded.It is concluded that HFa and SK have the same site of action. Thus it seems that HFa may block the precursor upon which SK acts by forming a complex with it. It is stressed that activation of this precursor by HFa requires a suitable surface.



1971 ◽  
Vol 66 (3) ◽  
pp. 558-576 ◽  
Author(s):  
Gerald Burke

ABSTRACT A long-acting thyroid stimulator (LATS), distinct from pituitary thyrotrophin (TSH), is found in the serum of some patients with Graves' disease. Despite the marked physico-chemical and immunologic differences between the two stimulators, both in vivo and in vitro studies indicate that LATS and TSH act on the same thyroidal site(s) and that such stimulation does not require penetration of the thyroid cell. Although resorption of colloid and secretion of thyroid hormone are early responses to both TSH and LATS, available evidence reveals no basic metabolic pathway which must be activated by these hormones in order for iodination reactions to occur. Cyclic 3′, 5′-AMP appears to mediate TSH and LATS effects on iodination reactions but the role of this compound in activating thyroidal intermediary metabolism is less clear. Based on the evidence reviewed herein, it is suggested that the primary site of action of thyroid stimulators is at the cell membrane and that beyond the(se) primary control site(s), there exists a multifaceted regulatory system for thyroid hormonogenesis and cell growth.



2016 ◽  
Vol 11 (4) ◽  
pp. 224-229
Author(s):  
Gebhard Froeba ◽  
Oliver Adolph


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 126-127
Author(s):  
Marta Zampino ◽  
Luigi Ferrucci ◽  
Richard Spencer ◽  
Kenneth Fishbein ◽  
Eleanor Simonsick ◽  
...  

Abstract Chronic low-grade inflammation often occurs with aging and has been associated with negative health outcomes. Despite extensive research on the origins of “inflammaging”, the causative mechanisms remain unclear. However, a connection between poor mitochondrial health and chronic inflammation has been hypothesized, with decreasing mitochondrial function occurring with age and precipitating an increase in reactive oxygen species and other pro-inflammatory macromolecules such as mitochondrial DNA. We tested this hypothesis on a population of 619 subjects from the Baltimore Longitudinal Study of Aging, measuring muscle mitochondrial oxidative capacity in vivo by phosphorus magnetic resonance spectroscopy (P-MRS), and plasma interleukin (IL)-6, the most widely used biomarker of inflammaging. The P-MRS-derived post-exercise phosphocreatine recovery time constant tau-PCr, a measure of oxidative capacity, was expressed as a categorical variable through assignment to quintiles. Participants in the first quintile of tau-PCr (best mitochondrial function) were taken as reference and compared to the others using linear regression analysis adjusted for sex, age, lean and fat body mass, and physical activity. Those participants with the lowest oxidative capacity had significantly higher log(IL-6) levels as compared to the reference group. However, data from the other quintiles was not significantly different from the reference values. In conclusion, severe impairment of oxidative capacity is associated with increased inflammation. This study design does not provide conclusive evidence of whether increased inflammation and impaired bioenergetic recovery are both caused by underlying poor health status, or whether mitochondrial deficits lead directly to the observed inflammation; we anticipate addressing this important question with longitudinal studies.



2021 ◽  
Vol 22 (11) ◽  
pp. 5590
Author(s):  
Clément Veys ◽  
Abderrahim Benmoussa ◽  
Romain Contentin ◽  
Amandine Duchemin ◽  
Emilie Brotin ◽  
...  

Chondrosarcomas are malignant bone tumors. Their abundant cartilage-like extracellular matrix and their hypoxic microenvironment contribute to their resistance to chemotherapy and radiotherapy, and no effective therapy is currently available. MicroRNAs (miRNAs) may be an interesting alternative in the development of therapeutic options. Here, for the first time in chondrosarcoma cells, we carried out high-throughput functional screening using impedancemetry, and identified five miRNAs with potential antiproliferative or chemosensitive effects on SW1353 chondrosarcoma cells. The cytotoxic effects of miR-342-5p and miR-491-5p were confirmed on three chondrosarcoma cell lines, using functional validation under normoxia and hypoxia. Both miRNAs induced apoptosis and miR-342-5p also induced autophagy. Western blots and luciferase reporter assays identified for the first time Bcl-2 as a direct target of miR-342-5p, and also Bcl-xL as a direct target of both miR-342-5p and miR-491-5p in chondrosarcoma cells. MiR-491-5p also inhibited EGFR expression. Finally, only miR-342-5p induced cell death on a relevant 3D chondrosarcoma organoid model under hypoxia that mimics the in vivo microenvironment. Altogether, our results revealed the tumor suppressive activity of miR-342-5p, and to a lesser extent of miR-491-5p, on chondrosarcoma lines. Through this study, we also confirmed the potential of Bcl-2 family members as therapeutic targets in chondrosarcomas.



2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Zhihuang Zheng ◽  
Chuanlei Li ◽  
Guangze Shao ◽  
Jinqing Li ◽  
Kexin Xu ◽  
...  

AbstractAcute kidney injury (AKI) is associated with significant morbidity and its chronic inflammation contributes to subsequent chronic kidney disease (CKD) development. Yes-associated protein (YAP), the major transcriptional coactivator of the Hippo pathway, has been shown associated with chronic inflammation, but its role and mechanism in AKI-CKD transition remain unclear. Here we aimed to investigate the role of YAP in AKI-induced chronic inflammation. Renal ischemia/reperfusion (I/R) was used to induce a mouse model of AKI-CKD transition. We used verteporfin (VP), a pharmacological inhibitor of YAP, to treat post-IRI mice for a period, and evaluated the influence of YAP inhibition on long-term outcomes of AKI. In our results, severe IRI led to maladaptive tubular repair, macrophages infiltration, and progressive fibrosis. Following AKI, the Hippo pathway was found significantly altered with YAP persistent activation. Besides, tubular YAP activation was associated with the maladaptive repair, also correlated with interstitial macrophage infiltration. Monocyte chemoattractant protein 1 (MCP-1) was found notably upregulated with YAP activation. Of note, pharmacological inhibition of YAP in vivo attenuated renal inflammation, including macrophage infiltration and MCP-1 overexpression. Consistently, in vitro oxygen-glucose deprivation and reoxygenation (OGD/R) induced YAP activation and MCP-1 overproduction whereas these could be inhibited by VP. In addition, we modulated YAP activity by RNA interference, which further confirmed YAP activation enhances MCP-1 expression. Together, we concluded tubular YAP activation with maladaptive repair exacerbates renal inflammation probably via promoting MCP-1 production, which contributes to AKI-CKD transition.



2021 ◽  
Vol 22 (14) ◽  
pp. 7565
Author(s):  
Kyungho Woo ◽  
Dong Ho Kim ◽  
Man Hwan Oh ◽  
Ho Sung Park ◽  
Chul Hee Choi

Quorum sensing of Acinetobacter nosocomialis for cell-to-cell communication produces N-3-hydroxy dodecanoyl-DL-homoserine lactone (OH-dDHL) by an AnoR/I two-component system. However, OH-dDHL-driven apoptotic mechanisms in hosts have not been clearly defined. Here, we investigated the induction of apoptosis signaling pathways in bone marrow-derived macrophages treated with synthetic OH-dDHL. Moreover, the quorum-sensing system for virulence regulation was evaluated in vivo using wild-type and anoI-deletion mutant strains. OH-dDHL decreased the viability of macrophage and epithelial cells in dose- and time-dependent manners. OH-dDHL induced Ca2+ efflux and caspase-12 activation by ER stress transmembrane protein (IRE1 and ATF6a p50) aggregation and induced mitochondrial dysfunction through reactive oxygen species (ROS) production, which caused cytochrome c to leak. Pretreatment with a pan-caspase inhibitor reduced caspase-3, -8, and -9, which were activated by OH-dDHL. Pro-inflammatory cytokine and paraoxonase-2 (PON2) gene expression were increased by OH-dDHL. We showed that the anoI-deletion mutant strains have less intracellular invasion compared to the wild-type strain, and their virulence, such as colonization and dissemination, was decreased in vivo. Consequently, these findings revealed that OH-dDHL, as a virulence factor, contributes to bacterial infection and survival as well as the modification of host responses in the early stages of infection.



1996 ◽  
Vol 16 (6) ◽  
pp. 2977-2986 ◽  
Author(s):  
C Antoniewski ◽  
B Mugat ◽  
F Delbac ◽  
J A Lepesant

The steroid hormone 20-hydroxyecdysone plays a key role in the induction and modulation of morphogenetic events throughout Drosophila development. Previous studies have shown that a heterodimeric nuclear receptor composed of the EcR and USP proteins mediates the action of the hormone at the transcriptional through binding to palindromic ecdysteroid mediates the action of the hormone at the transcriptional level through binding to palindromic ecdysteroid response elements (EcREs) such as those present in the promoter of the hsp27 gene or the fat body-specific enhancer of the Fbp1 gene. We show that in addition to palindromic EcREs, the EcR/USP heterodimer can bind in vitro with various affinities to direct repetitions of the motif AGGTCA separated by 1 to 5 nucleotides (DR1 to DR5), which are known to be target sites for vertebrate nuclear receptors. At variance with the receptors, EcR/USP was also found to bind to a DR0 direct repeat with no intervening nucleotide. In cell transformation assays, direct repeats DR0 to DR5 alone can render the minimum viral tk or Drosophila Fbp1 promoter responsive to 20-hydroxyecdysone, as does the palindromic hsp27 EcRE. In a transgenic assay, however, neither the palindromic hsp27 element nor direct repeat DR3 alone can make the Fbp1 minimal promoter responsive to premetamorphic ecdysteroid peaks. In contrast, DR0 and DR3 elements, when substituted for the natural palindromic EcRE in the context of the Fbp1 enhancer, can drive a strong fat body-specific ecdysteroid response in transgenic animals. These results demonstrate that directly repeated EcR/USP binding sites are as effective as palindromic EcREs in vivo. They also provide evidence that additional flanking regulatory sequences are crucially required to potentiate the hormonal response mediated by both types of elements and specify its spatial and temporal pattern.



Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1912
Author(s):  
Kaushik Chakravarty ◽  
Victor G. Antontsev ◽  
Maksim Khotimchenko ◽  
Nilesh Gupta ◽  
Aditya Jagarapu ◽  
...  

The COVID-19 pandemic has reached over 100 million worldwide. Due to the multi-targeted nature of the virus, it is clear that drugs providing anti-COVID-19 effects need to be developed at an accelerated rate, and a combinatorial approach may stand to be more successful than a single drug therapy. Among several targets and pathways that are under investigation, the renin-angiotensin system (RAS) and specifically angiotensin-converting enzyme (ACE), and Ca2+-mediated SARS-CoV-2 cellular entry and replication are noteworthy. A combination of ACE inhibitors and calcium channel blockers (CCBs), a critical line of therapy for pulmonary hypertension, has shown therapeutic relevance in COVID-19 when investigated independently. To that end, we conducted in silico modeling using BIOiSIM, an AI-integrated mechanistic modeling platform by utilizing known preclinical in vitro and in vivo datasets to accurately simulate systemic therapy disposition and site-of-action penetration of the CCBs and ACEi compounds to tissues implicated in COVID-19 pathogenesis.



eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Daniel P Stewart ◽  
Suresh Marada ◽  
William J Bodeen ◽  
Ashley Truong ◽  
Sadie Miki Sakurada ◽  
...  

Hedgehog ligands activate an evolutionarily conserved signaling pathway that provides instructional cues during tissue morphogenesis, and when corrupted, contributes to developmental disorders and cancer. The transmembrane protein Dispatched is an essential component of the machinery that deploys Hedgehog family ligands from producing cells, and is absolutely required for signaling to long-range targets. Despite this crucial role, regulatory mechanisms controlling Dispatched activity remain largely undefined. Herein, we reveal vertebrate Dispatched is activated by proprotein convertase-mediated cleavage at a conserved processing site in its first extracellular loop. Dispatched processing occurs at the cell surface to instruct its membrane re-localization in polarized epithelial cells. Cleavage site mutation alters Dispatched membrane trafficking and reduces ligand release, leading to compromised pathway activity in vivo. As such, convertase-mediated cleavage is required for Dispatched maturation and functional competency in Hedgehog ligand-producing cells.



Sign in / Sign up

Export Citation Format

Share Document