scholarly journals Computation of condition-dependent proteome allocation reveals variability in the macro and micro nutrient requirements for growth

2021 ◽  
Vol 17 (6) ◽  
pp. e1007817
Author(s):  
Colton J. Lloyd ◽  
Jonathan Monk ◽  
Laurence Yang ◽  
Ali Ebrahim ◽  
Bernhard O. Palsson

Sustaining a robust metabolic network requires a balanced and fully functioning proteome. In addition to amino acids, many enzymes require cofactors (coenzymes and engrafted prosthetic groups) to function properly. Extensively validated resource allocation models, such as genome-scale models of metabolism and gene expression (ME-models), have the ability to compute an optimal proteome composition underlying a metabolic phenotype, including the provision of all required cofactors. Here we apply the ME-model for Escherichia coli K-12 MG1655 to computationally examine how environmental conditions change the proteome and its accompanying cofactor usage. We found that: (1) The cofactor requirements computed by the ME-model mostly agree with the standard biomass objective function used in models of metabolism alone (M-models); (2) ME-model computations reveal non-intuitive variability in cofactor use under different growth conditions; (3) An analysis of ME-model predicted protein use in aerobic and anaerobic conditions suggests an enrichment in the use of peroxyl scavenging acids in the proteins used to sustain aerobic growth; (4) The ME-model could describe how limitation in key protein components affect the metabolic state of E. coli. Genome-scale models have thus reached a level of sophistication where they reveal intricate properties of functional proteomes and how they support different E. coli lifestyles.

Author(s):  
Colton J. Lloyd ◽  
Jonathan Monk ◽  
Laurence Yang ◽  
Ali Ebrahim ◽  
Bernhard O. Palsson

AbstractSustaining a robust metabolic network requires a balanced and fully functioning proteome. In addition to amino acids, many enzymes require cofactors (coenzymes and engrafted prosthetic groups) to function properly. Extensively validated genome-scale models of metabolism and gene expression (ME-models) have the unique ability to compute an optimal proteome composition underlying a metabolic phenotype, including the provision of all required cofactors. Here we use the ME-model for Escherichia coli K-12 MG1655 to computationally examine how environmental conditions change the proteome and its accompanying cofactor usage. We found that: (1) The cofactor requirements computed by the ME model mostly agree with the standard biomass objective function used in models of metabolism alone (M models); (2) ME-model computations reveal non-intuitive variability in cofactor use under different growth conditions; (3) An analysis of ME-model predicted protein use in aerobic and anaerobic conditions suggests an enrichment in the use of prebiotic amino acids in the proteins used to sustain anaerobic growth (4) The ME-model could describe how limitation in key protein components affect the metabolic state of E. coli. Genome-scale models have thus reached a level of sophistication where they reveal intricate properties of functional proteomes and how they support different E. coli lifestyles.


2017 ◽  
Vol 20 (4) ◽  
pp. 1167-1180 ◽  
Author(s):  
David Gilbert ◽  
Monika Heiner ◽  
Yasoda Jayaweera ◽  
Christian Rohr

Abstract The analysis of the dynamic behaviour of genome-scale models of metabolism (GEMs) currently presents considerable challenges because of the difficulties of simulating such large and complex networks. Bacterial GEMs can comprise about 5000 reactions and metabolites, and encode a huge variety of growth conditions; such models cannot be used without sophisticated tool support. This article is intended to aid modellers, both specialist and non-specialist in computerized methods, to identify and apply a suitable combination of tools for the dynamic behaviour analysis of large-scale metabolic designs. We describe a methodology and related workflow based on publicly available tools to profile and analyse whole-genome-scale biochemical models. We use an efficient approximative stochastic simulation method to overcome problems associated with the dynamic simulation of GEMs. In addition, we apply simulative model checking using temporal logic property libraries, clustering and data analysis, over time series of reaction rates and metabolite concentrations. We extend this to consider the evolution of reaction-oriented properties of subnets over time, including dead subnets and functional subsystems. This enables the generation of abstract views of the behaviour of these models, which can be large—up to whole genome in size—and therefore impractical to analyse informally by eye. We demonstrate our methodology by applying it to a reduced model of the whole-genome metabolism of Escherichia coli K-12 under different growth conditions. The overall context of our work is in the area of model-based design methods for metabolic engineering and synthetic biology.


mSystems ◽  
2017 ◽  
Vol 2 (3) ◽  
Author(s):  
Brian T. Burger ◽  
Saheed Imam ◽  
Matthew J. Scarborough ◽  
Daniel R. Noguera ◽  
Timothy J. Donohue

ABSTRACT Knowledge about the role of genes under a particular growth condition is required for a holistic understanding of a bacterial cell and has implications for health, agriculture, and biotechnology. We developed the Tn-seq analysis software (TSAS) package to provide a flexible and statistically rigorous workflow for the high-throughput analysis of insertion mutant libraries, advanced the knowledge of gene essentiality in R. sphaeroides, and illustrated how Tn-seq data can be used to more accurately identify genes that play important roles in metabolism and other processes that are essential for cellular survival. Rhodobacter sphaeroides is one of the best-studied alphaproteobacteria from biochemical, genetic, and genomic perspectives. To gain a better systems-level understanding of this organism, we generated a large transposon mutant library and used transposon sequencing (Tn-seq) to identify genes that are essential under several growth conditions. Using newly developed Tn-seq analysis software (TSAS), we identified 493 genes as essential for aerobic growth on a rich medium. We then used the mutant library to identify conditionally essential genes under two laboratory growth conditions, identifying 85 additional genes required for aerobic growth in a minimal medium and 31 additional genes required for photosynthetic growth. In all instances, our analyses confirmed essentiality for many known genes and identified genes not previously considered to be essential. We used the resulting Tn-seq data to refine and improve a genome-scale metabolic network model (GEM) for R. sphaeroides. Together, we demonstrate how genetic, genomic, and computational approaches can be combined to obtain a systems-level understanding of the genetic framework underlying metabolic diversity in bacterial species. IMPORTANCE Knowledge about the role of genes under a particular growth condition is required for a holistic understanding of a bacterial cell and has implications for health, agriculture, and biotechnology. We developed the Tn-seq analysis software (TSAS) package to provide a flexible and statistically rigorous workflow for the high-throughput analysis of insertion mutant libraries, advanced the knowledge of gene essentiality in R. sphaeroides, and illustrated how Tn-seq data can be used to more accurately identify genes that play important roles in metabolism and other processes that are essential for cellular survival. Author Video: An author video summary of this article is available.


2018 ◽  
Author(s):  
Laurence Yang ◽  
Ali Ebrahim ◽  
Colton J. Lloyd ◽  
Michael A. Saunders ◽  
Bernhard O. Palsson

AbstractGenome-scale models of metabolism and macromolecular expression (ME models) enable systems-level computation of proteome allocation coupled to metabolic phenotype. We develop dynamicME, an algorithm enabling time-course simulation of cell metabolism and protein expression. Our dynamicME correctly predicted the substrate utilization hierarchy on mixed carbon substrate medium. We also found good agreement between predicted and measured time-course expression profiles. ME models involve considerably more parameters than metabolic models (M models). We thus present two methods to calibrate ME models, specifically using time-course measurements such as from a (fed-) batch culture. Overall, dynamicME and the methods presented provide novel methods for understanding proteome allocation and metabolism under complex and transient environments, and to utilize time-course cell culture data for model-based interpretation or model refinement.


2019 ◽  
Author(s):  
Matthew L. Jenior ◽  
Thomas J. Moutinho ◽  
Bonnie V. Dougherty ◽  
Jason A. Papin

AbstractThe metabolic responses of bacteria to dynamic extracellular conditions drives not only the behavior of single species, but also entire communities of microbes. Over the last decade, genome-scale metabolic network reconstructions have assisted in our appreciation of important metabolic determinants of bacterial physiology. These network models have been a powerful force in understanding the metabolic capacity that species may utilize in order to succeed in an environment. Increasingly, an understanding of context-specific metabolism is critical for elucidating metabolic drivers of larger phenotypes and disease. However, previous approaches to use network models in concert with omics data to better characterize experimental systems have met challenges due to assumptions necessary by the various integration platforms or due to large input data requirements. With these challenges in mind, we developed RIPTiDe (Reaction Inclusion by Parsimony and Transcript Distribution) which uses both transcriptomic abundances and parsimony of overall flux to identify the most cost-effective usage of metabolism that also best reflects the cell’s investments into transcription. Additionally, in biological samples where it is difficult to quantify specific growth conditions, it becomes critical to develop methods that require lower amounts of user intervention in order to generate accurate metabolic predictions. Utilizing a metabolic network reconstruction for the model organism Escherichia coli str. K-12 substr. MG1655 (iJO1366), we found that RIPTiDe correctly identifies context-specific metabolic pathway activity without supervision or knowledge of specific media conditions. We also assessed the application of RIPTiDe to in vivo metatranscriptomic data where E. coli was present at high abundances, and found that our approach also effectively predicts metabolic behaviors of host-associated bacteria. In the setting of human health, understanding metabolic changes within bacteria in environments where growth substrate availability is difficult to quantify can have large downstream impacts on our ability to elucidate molecular drivers of disease-associated dysbiosis across the microbiota. Our results indicate that RIPTiDe may have potential to provide understanding of context-specific metabolism of bacteria within complex communities.Author SummaryTranscriptomic analyses of bacteria have become instrumental to our understanding of their responses to changes in their environment. While traditional analyses have been informative, leveraging these datasets within genome-scale metabolic network reconstructions (GENREs) can provide greatly improved context for shifts in pathway utilization and downstream/upstream ramifications for changes in metabolic regulation. Many previous techniques for GENRE transcript integration have focused on creating maximum consensus with input datasets, but these approaches were recently shown to generate less accurate metabolic predictions than a transcript-agnostic method of flux minimization (pFBA), which identifies the most efficient/economic patterns of metabolism given certain growth constraints. Despite this success, growth conditions are not always easily quantifiable and highlights the need for novel platforms that build from these findings. Our new method, RIPTiDe, combines these concepts and utilizes overall minimization of flux weighted by transcriptomic analysis to identify the most energy efficient pathways to achieve growth that include more highly transcribed enzymes, without previous insight into extracellular conditions. Utilizing a well-studied GENRE from Escherichia coli, we demonstrate that this new approach correctly predicts patterns of metabolism utilizing a variety of both in vitro and in vivo transcriptomes. This platform could be important for revealing context-specific bacterial phenotypes in line with governing principles of adaptive evolution, that drive disease manifestation or interactions between microbes.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jingru Zhou ◽  
Yingping Zhuang ◽  
Jianye Xia

Abstract Background Genome-scale metabolic model (GSMM) is a powerful tool for the study of cellular metabolic characteristics. With the development of multi-omics measurement techniques in recent years, new methods that integrating multi-omics data into the GSMM show promising effects on the predicted results. It does not only improve the accuracy of phenotype prediction but also enhances the reliability of the model for simulating complex biochemical phenomena, which can promote theoretical breakthroughs for specific gene target identification or better understanding the cell metabolism on the system level. Results Based on the basic GSMM model iHL1210 of Aspergillus niger, we integrated large-scale enzyme kinetics and proteomics data to establish a GSMM based on enzyme constraints, termed a GEM with Enzymatic Constraints using Kinetic and Omics data (GECKO). The results show that enzyme constraints effectively improve the model’s phenotype prediction ability, and extended the model’s potential to guide target gene identification through predicting metabolic phenotype changes of A. niger by simulating gene knockout. In addition, enzyme constraints significantly reduced the solution space of the model, i.e., flux variability over 40.10% metabolic reactions were significantly reduced. The new model showed also versatility in other aspects, like estimating large-scale $$k_{{cat}}$$ k cat values, predicting the differential expression of enzymes under different growth conditions. Conclusions This study shows that incorporating enzymes’ abundance information into GSMM is very effective for improving model performance with A. niger. Enzyme-constrained model can be used as a powerful tool for predicting the metabolic phenotype of A. niger by incorporating proteome data. In the foreseeable future, with the fast development of measurement techniques, and more precise and rich proteomics quantitative data being obtained for A. niger, the enzyme-constrained GSMM model will show greater application space on the system level.


Metabolites ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 221
Author(s):  
Ozlem Altay ◽  
Cheng Zhang ◽  
Hasan Turkez ◽  
Jens Nielsen ◽  
Mathias Uhlén ◽  
...  

Burkholderia cenocepacia is among the important pathogens isolated from cystic fibrosis (CF) patients. It has attracted considerable attention because of its capacity to evade host immune defenses during chronic infection. Advances in systems biology methodologies have led to the emergence of methods that integrate experimental transcriptomics data and genome-scale metabolic models (GEMs). Here, we integrated transcriptomics data of bacterial cells grown on exponential and biofilm conditions into a manually curated GEM of B. cenocepacia. We observed substantial differences in pathway response to different growth conditions and alternative pathway susceptibility to extracellular nutrient availability. For instance, we found that blockage of the reactions was vital through the lipid biosynthesis pathways in the exponential phase and the absence of microenvironmental lysine and tryptophan are essential for survival. During biofilm development, bacteria mostly had conserved lipid metabolism but altered pathway activities associated with several amino acids and pentose phosphate pathways. Furthermore, conversion of serine to pyruvate and 2,5-dioxopentanoate synthesis are also identified as potential targets for metabolic remodeling during biofilm development. Altogether, our integrative systems biology analysis revealed the interactions between the bacteria and its microenvironment and enabled the discovery of antimicrobial targets for biofilm-related diseases.


2010 ◽  
Vol 38 (5) ◽  
pp. 1225-1229 ◽  
Author(s):  
Evangelos Simeonidis ◽  
Ettore Murabito ◽  
Kieran Smallbone ◽  
Hans V. Westerhoff

Advances in biological techniques have led to the availability of genome-scale metabolic reconstructions for yeast. The size and complexity of such networks impose limits on what types of analyses one can perform. Constraint-based modelling overcomes some of these restrictions by using physicochemical constraints to describe the potential behaviour of an organism. FBA (flux balance analysis) highlights flux patterns through a network that serves to achieve a particular objective and requires a minimal amount of data to make quantitative inferences about network behaviour. Even though FBA is a powerful tool for system predictions, its general formulation sometimes results in unrealistic flux patterns. A typical example is fermentation in yeast: ethanol is produced during aerobic growth in excess glucose, but this pattern is not present in a typical FBA solution. In the present paper, we examine the issue of yeast fermentation against respiration during growth. We have studied a number of hypotheses from the modelling perspective, and novel formulations of the FBA approach have been tested. By making the observation that more respiration requires the synthesis of more mitochondria, an energy cost related to mitochondrial synthesis is added to the FBA formulation. Results, although still approximate, are closer to experimental observations than earlier FBA analyses, at least on the issue of fermentation.


Sign in / Sign up

Export Citation Format

Share Document