scholarly journals The importance of urgency in decision making based on dynamic information

2021 ◽  
Vol 17 (10) ◽  
pp. e1009455
Author(s):  
Lorenzo Ferrucci ◽  
Aldo Genovesio ◽  
Encarni Marcos

A standard view in the literature is that decisions are the result of a process that accumulates evidence in favor of each alternative until such accumulation reaches a threshold and a decision is made. However, this view has been recently questioned by an alternative proposal that suggests that, instead of accumulated, evidence is combined with an urgency signal. Both theories have been mathematically formalized and supported by a variety of decision-making tasks with constant information. However, recently, tasks with changing information have shown to be more effective to study the dynamics of decision making. Recent research using one of such tasks, the tokens task, has shown that decisions are better described by an urgency mechanism than by an accumulation one. However, the results of that study could depend on a task where all fundamental information was noiseless and always present, favoring a mechanism of non-integration, such as the urgency one. Here, we wanted to address whether the same conclusions were also supported by an experimental paradigm in which sensory evidence was removed shortly after it was provided, making working memory necessary to properly perform the task. Here, we show that, under such condition, participants’ behavior could be explained by an urgency-gating mechanism that low-pass filters the mnemonic information and combines it with an urgency signal that grows with time but not by an accumulation process that integrates the same mnemonic information. Thus, our study supports the idea that, under certain situations with dynamic sensory information, decisions are better explained by an urgency-gating mechanism than by an accumulation one.

1998 ◽  
Vol 80 (4) ◽  
pp. 2222-2228 ◽  
Author(s):  
Andrea M. Green ◽  
Henrietta L. Galiana

Green, Andrea M. and Henrietta L. Galiana. Hypothesis for shared central processing of canal and otolith signals. J. Neurophysiol. 80: 2222–2228, 1998. A common goal of the translational vestibuloocular reflex (TVOR) and the rotational vestibuloocular reflex (RVOR) is to stabilize visual targets on the retinae during head movement. However, these reflexes differ significantly in their dynamic characteristics at both sensory and motor levels, implying a requirement for different central processing of canal and otolith signals. Semicircular canal afferents carry a signal proportional to angular head velocity, whereas primary otolith afferents modulate approximately in phase with linear head acceleration. Behaviorally, the RVOR exhibits a robust response down to ∼0.01 Hz, yet the TVOR is only significant above ∼0.5 Hz. Several hypotheses were proposed to address central processing in the TVOR pathways. All rely on a central filtering process that precedes a “neural integrator” shared with the RVOR. We propose an alternative hypothesis for the convergence of canal and otolith signals that does not impose the requirement for additional low-pass filters for the TVOR. The approach is demonstrated using an anatomically based, simple model structure that reproduces the general dynamic characteristics of the RVOR and TVOR at both ocular and central levels. Differential dynamic processing of otolith and canal signals is achieved by virtue of the location at which sensory information enters a shared but distributed neural integrator. As a result, only the RVOR is provided with compensation for the eye plant. Hence canal and otolith signals share a common central integrator, as in previous hypotheses. However, we propose that the required additional filtering of otolith signals is provided by the eye plant.


2016 ◽  
Vol 115 (2) ◽  
pp. 915-930 ◽  
Author(s):  
Matthew A. Carland ◽  
Encarni Marcos ◽  
David Thura ◽  
Paul Cisek

Perceptual decision making is often modeled as perfect integration of sequential sensory samples until the accumulated total reaches a fixed decision bound. In that view, the buildup of neural activity during perceptual decision making is attributed to temporal integration. However, an alternative explanation is that sensory estimates are computed quickly with a low-pass filter and combined with a growing signal reflecting the urgency to respond and it is the latter that is primarily responsible for neural activity buildup. These models are difficult to distinguish empirically because they make similar predictions for tasks in which sensory information is constant within a trial, as in most previous studies. Here we presented subjects with a variant of the classic constant-coherence motion discrimination (CMD) task in which we inserted brief motion pulses. We examined the effect of these pulses on reaction times (RTs) in two conditions: 1) when the CMD trials were blocked and subjects responded quickly and 2) when the same CMD trials were interleaved among trials of a variable-motion coherence task that motivated slower decisions. In the blocked condition, early pulses had a strong effect on RTs but late pulses did not, consistent with both models. However, when subjects slowed their decision policy in the interleaved condition, later pulses now became effective while early pulses lost their efficacy. This last result contradicts models based on perfect integration of sensory evidence and implies that motion signals are processed with a strong leak, equivalent to a low-pass filter with a short time constant.


2012 ◽  
Vol 108 (11) ◽  
pp. 2912-2930 ◽  
Author(s):  
David Thura ◽  
Julie Beauregard-Racine ◽  
Charles-William Fradet ◽  
Paul Cisek

It is often suggested that decisions are made when accumulated sensory information reaches a fixed accuracy criterion. This is supported by many studies showing a gradual build up of neural activity to a threshold. However, the proposal that this build up is caused by sensory accumulation is challenged by findings that decisions are based on information from a time window much shorter than the build-up process. Here, we propose that in natural conditions where the environment can suddenly change, the policy that maximizes reward rate is to estimate evidence by accumulating only novel information and then compare the result to a decreasing accuracy criterion. We suggest that the brain approximates this policy by multiplying an estimate of sensory evidence with a motor-related urgency signal and that the latter is primarily responsible for neural activity build up. We support this hypothesis using human behavioral data from a modified random-dot motion task in which motion coherence changes during each trial.


2017 ◽  
Author(s):  
Jung H. Lee ◽  
Joji Tsunada ◽  
Sujith Vijayan ◽  
Yale E. Cohen

AbstractThe intrinsic uncertainty of sensory information (i.e., evidence) does not necessarily deter an observer from making a reliable decision. Indeed, uncertainty can be reduced by integrating (accumulating) incoming sensory evidence. It is widely thought that this accumulation is instantiated via recurrent rate-code neural networks. Yet, these networks do not fully explain important aspects of perceptual decision-making, such as a subject’s ability to retain accumulated evidence during temporal gaps in the sensory evidence. Here, we utilized computational models to show that cortical circuits can switch flexibly between ‘retention’ and ‘integration’ modes during perceptual decision-making. Further, we found that, depending on how the sensory evidence was readout, we could simulate ‘stepping’ and ‘ramping’ activity patterns, which may be analogous to those seen in different studies of decision-making in the primate parietal cortex. This finding may reconcile these previous empirical studies because it suggests these two activity patterns emerge from the same mechanism.


2015 ◽  
Vol E98.C (2) ◽  
pp. 156-161
Author(s):  
Hidenori YUKAWA ◽  
Koji YOSHIDA ◽  
Tomohiro MIZUNO ◽  
Tetsu OWADA ◽  
Moriyasu MIYAZAKI
Keyword(s):  
Ka Band ◽  
Low Pass ◽  

2011 ◽  
Vol 5 (2) ◽  
pp. 155-162
Author(s):  
Jose de Jesus Rubio ◽  
Diana M. Vazquez ◽  
Jaime Pacheco ◽  
Vicente Garcia

Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 328
Author(s):  
Mikulas Huba ◽  
Damir Vrancic

The paper investigates and explains a new simple analytical tuning of proportional-integrative-derivative (PID) controllers. In combination with nth order series binomial low-pass filters, they are to be applied to the double-integrator-plus-dead-time (DIPDT) plant models. With respect to the use of derivatives, it should be understood that the design of appropriate filters is not only an implementation problem. Rather, it is also critical for the resulting performance, robustness and noise attenuation. To simplify controller commissioning, integrated tuning procedures (ITPs) based on three different concepts of filter delay equivalences are presented. For simultaneous determination of controller + filter parameters, the design uses the multiple real dominant poles method. The excellent control loop performance in a noisy environment and the specific advantages and disadvantages of the resulting equivalences are discussed. The results show that none of them is globally optimal. Each of them is advantageous only for certain noise levels and the desired degree of their filtering.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 563
Author(s):  
Jorge Pérez-Bailón ◽  
Belén Calvo ◽  
Nicolás Medrano

This paper presents a new approach based on the use of a Current Steering (CS) technique for the design of fully integrated Gm–C Low Pass Filters (LPF) with sub-Hz to kHz tunable cut-off frequencies and an enhanced power-area-dynamic range trade-off. The proposed approach has been experimentally validated by two different first-order single-ended LPFs designed in a 0.18 µm CMOS technology powered by a 1.0 V single supply: a folded-OTA based LPF and a mirrored-OTA based LPF. The first one exhibits a constant power consumption of 180 nW at 100 nA bias current with an active area of 0.00135 mm2 and a tunable cutoff frequency that spans over 4 orders of magnitude (~100 mHz–152 Hz @ CL = 50 pF) preserving dynamic figures greater than 78 dB. The second one exhibits a power consumption of 1.75 µW at 500 nA with an active area of 0.0137 mm2 and a tunable cutoff frequency that spans over 5 orders of magnitude (~80 mHz–~1.2 kHz @ CL = 50 pF) preserving a dynamic range greater than 73 dB. Compared with previously reported filters, this proposal is a competitive solution while satisfying the low-voltage low-power on-chip constraints, becoming a preferable choice for general-purpose reconfigurable front-end sensor interfaces.


Sign in / Sign up

Export Citation Format

Share Document