scholarly journals An insulator blocks access to enhancers by an illegitimate promoter, preventing repression by transcriptional interference

PLoS Genetics ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. e1009536
Author(s):  
Miki Fujioka ◽  
Anastasiya Nezdyur ◽  
James B. Jaynes

Several distinct activities and functions have been described for chromatin insulators, which separate genes along chromosomes into functional units. Here, we describe a novel mechanism of functional separation whereby an insulator prevents gene repression. When thehomieinsulator is deleted from the end of a Drosophilaeven skipped(eve) locus, a flanking P-element promoter is activated in a partialevepattern, causing expression driven by enhancers in the 3’ region to be repressed. The mechanism involves transcriptional read-through from the flanking promoter. This conclusion is based on the following. Read-through driven by a heterologous enhancer is sufficient to repress, even whenhomieis in place. Furthermore, when the flanking promoter is turned around, repression is minimal. Transcriptional read-through that does not produce anti-sense RNA can still repress expression, ruling out RNAi as the mechanism in this case. Thus, transcriptional interference, caused by enhancer capture and read-through when the insulator is removed, repressesevepromoter-driven expression. We also show that enhancer-promoter specificity and processivity of transcription can have decisive effects on the consequences of insulator removal. First, a coreheat shock 70promoter that is not activated well byeveenhancers did not cause read-through sufficient to repress theevepromoter. Second, these transcripts are less processive than those initiated at the P-promoter, measured by how far they extend through theevelocus, and so are less disruptive. These results highlight the importance of considering transcriptional read-through when assessing the effects of insulators on gene expression.

Development ◽  
1988 ◽  
Vol 104 (Supplement) ◽  
pp. 85-93 ◽  
Author(s):  
Stephen J. Poole ◽  
Thomas B. Kornberg

The engrailed gene is required for segmentation of the Drosophila embryo and is expressed in cells constituting the posterior developmental compartments. In mutant embryos lacking engrailed function, portions of the cuticular pattern in each segment are deleted, resulting in fusion of adjacent denticle bands. Using P-element-mediated transposition, we generated flies that express the engrailed gene under the control of an hsp70 promoter, and found that ectopic, heat-shock-induced, engrailed expression caused pattern defects similar to those in embryos lacking engrailed function. Sensitivity to heat shock was only during the cellular blastoderm and early gastrulation periods. This window of sensitivity corresponds to the time when wildtype engrailed protein localizes into segmentally reiterated stripes and represents only a small portion of the normal period of engrailed gene expression.


1988 ◽  
Vol 8 (4) ◽  
pp. 1489-1497 ◽  
Author(s):  
J A Williams ◽  
S S Pappu ◽  
J B Bell

Secondary and tertiary derivatives of a P-element insertion allele at the vestigial (vg) locus were induced by hybrid dysgenesis. The derivatives were characterized by Southern analyses and, in four cases, by DNA sequencing. The alterations found were P-element internal deletions, deletions of the insert and/or adjacent vg region DNA, or novel insertions of P-element sequences into existing P-element inserts. The relatively high frequency of secondary insertions into P-element sequences observed herein is unusual, since secondary insertions have seldom been recovered in other dysgenic screens. The effects of the alleles on vg expression were determined. The results are consistent with a model in which the insertions disrupt vg gene expression by transcriptional interference.


1988 ◽  
Vol 8 (4) ◽  
pp. 1489-1497
Author(s):  
J A Williams ◽  
S S Pappu ◽  
J B Bell

Secondary and tertiary derivatives of a P-element insertion allele at the vestigial (vg) locus were induced by hybrid dysgenesis. The derivatives were characterized by Southern analyses and, in four cases, by DNA sequencing. The alterations found were P-element internal deletions, deletions of the insert and/or adjacent vg region DNA, or novel insertions of P-element sequences into existing P-element inserts. The relatively high frequency of secondary insertions into P-element sequences observed herein is unusual, since secondary insertions have seldom been recovered in other dysgenic screens. The effects of the alleles on vg expression were determined. The results are consistent with a model in which the insertions disrupt vg gene expression by transcriptional interference.


2019 ◽  
Vol 70 (19) ◽  
pp. 5355-5374 ◽  
Author(s):  
Dandan Zang ◽  
Jingxin Wang ◽  
Xin Zhang ◽  
Zhujun Liu ◽  
Yucheng Wang

Abstract Plant heat shock transcription factors (HSFs) are involved in heat and other abiotic stress responses. However, their functions in salt tolerance are little known. In this study, we characterized the function of a HSF from Arabidopsis, AtHSFA7b, in salt tolerance. AtHSFA7b is a nuclear protein with transactivation activity. ChIP-seq combined with an RNA-seq assay indicated that AtHSFA7b preferentially binds to a novel cis-acting element, termed the E-box-like motif, to regulate gene expression; it also binds to the heat shock element motif. Under salt conditions, AtHSFA7b regulates its target genes to mediate serial physiological changes, including maintaining cellular ion homeostasis, reducing water loss rate, decreasing reactive oxygen species accumulation, and adjusting osmotic potential, which ultimately leads to improved salt tolerance. Additionally, most cellulose synthase-like (CSL) and cellulose synthase (CESA) family genes were inhibited by AtHSFA7b; some of them were randomly selected for salt tolerance characterization, and they were mainly found to negatively modulate salt tolerance. By contrast, some transcription factors (TFs) were induced by AtHSFA7b; among them, we randomly identified six TFs that positively regulate salt tolerance. Thus, AtHSFA7b serves as a transactivator that positively mediates salinity tolerance mainly through binding to the E-box-like motif to regulate gene expression.


Genetics ◽  
2000 ◽  
Vol 156 (4) ◽  
pp. 1727-1736 ◽  
Author(s):  
Maxim V Frolov ◽  
Elizaveta V Benevolenskaya ◽  
James A Birchler

Abstract A P-element insertion in the oxen gene, ox1, has been isolated in a search for modifiers of white gene expression. The mutation preferentially exerts a negative dosage effect upon the expression of three genes encoding ABC transporters involved in pigment precursor transport, white, brown, and scarlet. A precise excision of the P element reverts the mutant phenotype. Five different transcription units were identified around the insertion site. To distinguish a transcript responsible for the mutant phenotype, a set of deletions within the oxen region was generated. Analysis of gene expression within the oxen region in the case of deletions as well as generation of transgenic flies allowed us to identify the transcript responsible for oxen function. It encodes a 6.6-kD homolog of mitochondrial ubiquinol cytochrome c oxidoreductase (QCR9), subunit 9 of the bc1 complex in yeast. In addition to white, brown, and scarlet, oxen regulates the expression of three of seven tested genes. Thus, our data provide additional evidence for a cellular response to changes in mitochondrial function. The oxen mutation provides a model for the genetic analysis in multicellular organisms of the effect of mitochondrial activity on nuclear gene expression.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1794
Author(s):  
Konstantina Stamperna ◽  
Themistoklis Giannoulis ◽  
Eleni Dovolou ◽  
Maria Kalemkeridou ◽  
Ioannis Nanas ◽  
...  

Heat shock protein 70 (HSP70) is a chaperon that stabilizes unfolded or partially folded proteins, preventing inappropriate inter- and intramolecular interactions. Here, we examined the developmental competence of in vitro matured oocytes exposed to heat stress with or without HSP70. Bovine oocytes were matured for 24 h at 39 °C without (group C39) or with HSP70 (group H39) and at 41 °C for the first 6 h, followed by 16 h at 39 °C with (group H41) or without HSP70 (group C41). After insemination, zygotes were cultured for 9 days at 39 °C. Cleavage and embryo yield were assessed 48 h post insemination and on days 7, 8, 9, respectively. Gene expression was assessed by RT-PCR in oocytes, cumulus cells and blastocysts. In C41, blastocysts formation rate was lower than in C39 and on day 9 it was lower than in H41. In oocytes, HSP70 enhanced the expression of three HSP genes regardless of incubation temperature. HSP70 at 39 °C led to tight coordination of gene expression in oocytes and blastocysts, but not in cumulus cells. Our results imply that HSP70, by preventing apoptosis, supporting signal transduction, and increasing antioxidant protection of the embryo, protects heat stressed maturing bovine oocyte and restores its developmental competence.


Sign in / Sign up

Export Citation Format

Share Document