scholarly journals The impact of SBF2 on taxane-induced peripheral neuropathy

PLoS Genetics ◽  
2022 ◽  
Vol 18 (1) ◽  
pp. e1009968
Author(s):  
Geneva M. Cunningham ◽  
Fei Shen ◽  
Xi Wu ◽  
Erica L. Cantor ◽  
Laura Gardner ◽  
...  

Taxane-induced peripheral neuropathy (TIPN) is a devastating survivorship issue for many cancer patients. In addition to its impact on quality of life, this toxicity may lead to dose reductions or treatment discontinuation, adversely impacting survival outcomes and leading to health disparities in African Americans (AA). Our lab has previously identified deleterious mutations in SET-Binding Factor 2 (SBF2) that significantly associated with severe TIPN in AA patients. Here, we demonstrate the impact of SBF2 on taxane-induced neuronal damage using an ex vivo model of SBF2 knockdown of induced pluripotent stem cell-derived sensory neurons. Knockdown of SBF2 exacerbated paclitaxel changes to cell viability and neurite outgrowth while attenuating paclitaxel-induced sodium current inhibition. Our studies identified paclitaxel-induced expression changes specific to mature sensory neurons and revealed candidate genes involved in the exacerbation of paclitaxel-induced phenotypes accompanying SBF2 knockdown. Overall, these findings provide ex vivo support for the impact of SBF2 on the development of TIPN and shed light on the potential pathways involved.

Author(s):  
Cynthia S. Bonhof ◽  
Lonneke V. van de Poll-Franse ◽  
Dareczka K. Wasowicz ◽  
Laurens V. Beerepoot ◽  
Gerard Vreugdenhil ◽  
...  

Abstract Purpose To gain more insight into the course of chemotherapy-induced peripheral neuropathy (CIPN) and its impact on health-related quality of life (HRQoL) in a population-based sample of colorectal cancer (CRC) patients up to 2 years after diagnosis. Methods All newly diagnosed CRC patients from four hospitals in the Netherlands were eligible for participation in an ongoing prospective cohort study. Patients (n = 340) completed questions on CIPN (EORTC QLQ-CIPN20) and HRQoL (EORTC QLQ-C30) before initial treatment (baseline) and 1 and 2 years after diagnosis. Results Among chemotherapy-treated patients (n = 105), a high sensory peripheral neuropathy (SPN) level was reported by 57% of patients at 1 year, and 47% at 2-year follow-up, whereas a high motor peripheral neuropathy (MPN) level was reported by 47% and 28%, at years 1 and 2, respectively. Linear mixed model analyses showed that SPN and MPN symptoms significantly increased from baseline to 1-year follow-up and did not return to baseline level after 2 years. Patients with a high SPN or MPN level reported a worse global quality of life and a worse physical, role, emotional, cognitive, and social functioning compared with those with a low SPN or MPN level. Conclusions Future studies should focus on understanding the mechanisms underlying CIPN so targeted interventions can be developed to reduce the impact of CIPN on patient’s lives. Implications for cancer survivors Patients need to be informed of both CIPN and the impact on HRQoL.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gabriel Peinkofer ◽  
Martina Maass ◽  
Kurt Pfannkuche ◽  
Agapios Sachinidis ◽  
Stephan Baldus ◽  
...  

Abstract Background Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) are regarded as promising cell type for cardiac cell replacement therapy, but it is not known whether the developmental stage influences their persistence and functional integration in the host tissue, which are crucial for a long-term therapeutic benefit. To investigate this, we first tested the cell adhesion capability of murine iPSC-CM in vitro at three different time points during the differentiation process and then examined cell persistence and quality of electrical integration in the infarcted myocardium in vivo. Methods To test cell adhesion capabilities in vitro, iPSC-CM were seeded on fibronectin-coated cell culture dishes and decellularized ventricular extracellular matrix (ECM) scaffolds. After fixed periods of time, stably attached cells were quantified. For in vivo experiments, murine iPSC-CM expressing enhanced green fluorescent protein was injected into infarcted hearts of adult mice. After 6–7 days, viable ventricular tissue slices were prepared to enable action potential (AP) recordings in transplanted iPSC-CM and surrounding host cardiomyocytes. Afterwards, slices were lysed, and genomic DNA was prepared, which was then used for quantitative real-time PCR to evaluate grafted iPSC-CM count. Results The in vitro results indicated differences in cell adhesion capabilities between day 14, day 16, and day 18 iPSC-CM with day 14 iPSC-CM showing the largest number of attached cells on ECM scaffolds. After intramyocardial injection, day 14 iPSC-CM showed a significant higher cell count compared to day 16 iPSC-CM. AP measurements revealed no significant difference in the quality of electrical integration and only minor differences in AP properties between d14 and d16 iPSC-CM. Conclusion The results of the present study demonstrate that the developmental stage at the time of transplantation is crucial for the persistence of transplanted iPSC-CM. iPSC-CM at day 14 of differentiation showed the highest persistence after transplantation in vivo, which may be explained by a higher capability to adhere to the extracellular matrix.


2021 ◽  
Author(s):  
T. Hang Nghiem-Rao ◽  
Courtney Pfeifer ◽  
Michelle Asuncion ◽  
Joshua Nord ◽  
Daniel Schill ◽  
...  

Abstract Parenteral nutrition-associated cholestasis (PNAC) significantly limits the safety of intravenous parenteral nutrition (PN). Critically ill infants are highly vulnerable to PNAC-related morbidity and mortality, however the impact of hepatic immaturity on PNAC is poorly understood. We examined developmental differences between fetal/infant and adult livers, and used human induced pluripotent stem cell-derived hepatocyte-like cells (iHLC) to gain insights into the contribution of development to altered sterol metabolism and PNAC. We used RNA-sequencing and computational techniques to compare gene expression patterns in human fetal/infant livers, adult liver, and iHLC. We identified distinct gene expression profiles between the human feta/infant livers compared to adult liver, and close resemblance of iHLC to human developing livers. Compared to adult, both developing livers and iHLC had significant downregulation of xenobiotic, bile acid, and fatty acid metabolism; and lower expression of the sterol metabolizing gene ABCG8. When challenged with stigmasterol, a plant sterol found in intravenous soy lipids, lipid accumulation was significantly higher in iHLC compared to adult-derived HepG2 cells. Our findings provide insights into altered bile acid and lipid metabolizing processes in the immature human liver, and support the use of iHLC as a relevant model system of developing liver to study lipid metabolism and PNAC.


Author(s):  
Roberta Mazza ◽  
John Maher

AbstractTechnologies required to generate induced pluripotent stem cells (iPSC) were first described 15 years ago, providing a strong impetus to the field of regenerative medicine. In parallel, immunotherapy has finally emerged as a clinically meaningful modality of cancer therapy. In particular, impressive efficacy has been achieved in patients with selected haematological malignancies using ex vivo expanded autologous T cells engineered to express chimeric antigen receptors (CARs). While solid tumours account for over 90% of human cancer, they currently are largely refractory to this therapeutic approach. Nonetheless, given the considerable innovation taking place worldwide in the CAR field, it is likely that effective solutions for common solid tumours will emerge in the near future. Such a development will create significant new challenges in the scalable delivery of these complex, costly and individualised therapies. CAR-engineered immune cell products that originate from iPSCs offer the potential to generate unlimited numbers of homogeneous, standardised cell products in which multiple defined gene modification events have been introduced to ensure safety, potency and reproducibility. Here, we review some of the emerging strategies in use to engineer CAR-expressing iPSC-derived drug products.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Jordan J Lancaster ◽  
Ike Chinyere ◽  
Bin Na Kim ◽  
Sherry Daugherty ◽  
Samuel Kim ◽  
...  

Introduction: Previously we have demonstrated that a tissue engineered heart patch comprised of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) and fibroblasts improves both left ventricular (LV) systolic and diastolic function in a rat model of CHF. In this study we tested the feasibility of upscaling cardiac patch size and surgical deployment in a swine model of CHF to test clinical utility. Methods: Four male Gottingen mini swine 20-25kg and three domestic swine 50-60kg were infarcted using percutaneous methods. Embolizing coils were deployed via catheter distal to the first diagonal branch of the left anterior descending (LAD) coronary artery and animals recovered for 4 weeks. Cardiac patches engineered with bio absorbable polygalactin-910 knitted mesh, dermal fibroblasts and hiPSC-CMs were cultured and implanted on the infarcted epicardium 4 weeks after MI. Cardiac magnetic resonance imaging was performed at baseline, 4 and 8 weeks post MI. All swine were implanted with continuous event recorders to acquire surface electrocardiogram during the entire study. In addition quality of life and functional capacity were assessed through video monitoring and treadmill exertion testing respectively. Infarct size was determined through 2,3,5-triphenyltetrazolium chloride staining. Results: LAD occlusion resulted in a significant (P<0.05) decrease EF (15%), and increase in EDV (59%) and ESV (100%). Average TIMI score decreased from 3.0±0 at time of MI to 1.5±0.6 4wks post MI. Cardiac patches were upsized to 6cm diameter for application in the swine. Patches displayed synchronous and spontaneous contractions within 48hrs. The 6cm patches, when implanted effectively covered the infarcted region bridging viable myocardium. Surgical handling and epicardial deployment was successfully accomplished via median sternotomy. The patches were robust in nature and could be deployed via a minimally invasive robotic procedure. No adverse arrhythmic activity was observed. Implantation of the cardiac patch restored activity levels (quality of life) of patch treated swine vs CHF controls. Conclusion: Our hiPSC-CM cardiac patch can be constructed in a clinical size, easily handled and implanted on the epicardium of the infarcted heart.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Farzaneh Rami ◽  
Halimeh Mollainezhad ◽  
Mansoor Salehi

The immune system consists of cells, proteins, and other molecules that beside each other have a protective function for the host against foreign pathogens. One of the most essential features of the immune system is distinguishability between self- and non-self-cells. This function has an important role in limiting development and progression of cancer cells. In this case, the immune system can detect tumor cell as a foreign pathogen; so, it can be effective in elimination of tumors in their early phases of development. This ability of the immune system resulted in the development of a novel therapeutic field for cancer treatment using host immune components which is called cancer immunotherapy. The main purpose of cancer immunotherapy is stimulation of a strong immune response against the tumor cells that can result from expressing either the immune activator cytokines in the tumor area or gene-modified immune cells. Because of the problems of culturing and manipulating immune cells ex vivo, in recent years, embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) have been used as new sources for generation of modified immune stimulatory cells. In this paper, we reviewed some of the progressions in iPSC technology for cancer immunotherapy.


2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Sou Nakamura ◽  
Naoshi Sugimoto ◽  
Koji Eto

AbstractPlatelet products are used in treatments for thrombocytopenia caused by hematopoietic diseases, chemotherapy, massive hemorrhages, extracorporeal circulation, and others. Their manufacturing depends on volunteers who donate blood. However, it is becoming increasingly necessary to reinforce this blood donation system with other blood sources due to the increase in demand and shortage of supply accompanying aging societies. In addition, blood-borne infections and alloimmune platelet transfusion refractoriness are not completely resolved. Since human induced pluripotent stem cell (iPSC)-platelet products can be supplied independently from the donor, it is expected to complement current platelet products. One big hurdle with iPSC-based systems is the production of 10 units, which is equivalent to 200 billion platelets. To overcome this issue, we established immortalized megakaryocyte cell lines (imMKCLs) by introducing three transgenes, c-MYC, BMI1, and BCL-XL, sequentially into hematopoietic and megakaryocytic progenitor stage cells derived from iPSCs. The three transgenes are regulated in a Tet-ON manner, enabling the addition and depletion of doxycycline to expand and maturate the imMKCLs, respectively. In addition, we succeeded in discovering drug combinations that enable feeder-free culture conditions in the imMKCL cultivation. Furthermore, we discovered the importance of turbulence in thrombopoiesis through live bone marrow imaging and developed a bioreactor based on the concept of turbulent flow. Eventually, through the identification of two key fluid physic parameters, turbulent energy and shear stress, we succeeded in scaling up the bioreactor to qualitatively and quantitatively achieve clinically applicable levels. Interestingly, three soluble factors released from imMKCLs in the turbulent flow condition, macrophage migration inhibitory factor (MIF), insulin growth factor binding protein 2 (IGFBP2), and nardilysin (NRDC), enhanced platelet production. Based on these developments, we initiated the first-in-human clinical trial of iPSC-derived platelets to a patient with alloimmune platelet transfusion refractoriness (allo-PTR) using an autologous product. In this review, we detail current research in this field and our study about the ex vivo production of iPSC-derived platelets.


Sign in / Sign up

Export Citation Format

Share Document