scholarly journals The CDKN2A G500 Allele Is More Frequent in GBM Patients with No Defined Telomere Maintenance Mechanism Tumors and Is Associated with Poorer Survival

PLoS ONE ◽  
2011 ◽  
Vol 6 (10) ◽  
pp. e26737 ◽  
Author(s):  
Janice A. Royds ◽  
Shafagh Al Nadaf ◽  
Anna K. Wiles ◽  
Yu-Jen Chen ◽  
Antonio Ahn ◽  
...  
Author(s):  
Basak Celtikci ◽  
Gulnihal Kulaksiz Erkmen ◽  
Zeliha Gunnur Dikmen

: Telomeres are the protective end caps of eukaryotic chromosomes and they decide the proliferative lifespan of somatic cells, as the guardians of the cell replication. Telomere length in leucocytes reflects telomere length in other somatic cells. Leucocyte telomere length can be a biomarker of human ageing. The risk of diseases, which are associated with reduced cell proliferation and tissue degeneration, including aging or aging-associated diseases, such as dyskeratosis congenita, cardiovascular diseases, pulmonary fibrosis and aplastic anemia, are correlated with an increase in short telomeres. On the other hand, the risk of diseases, which are associated with increased proliferative growth, including major cancers, is correlated with long telomeres. In most of the cancers, a telomere maintenance mechanism during DNA replication is essential. The reactivation of the functional ribonucleoprotein holoenzyme complex [telomerase] starts the cascade from normal and premalignant somatic cells to advanced malignant cells. Telomerase is overexpressed during the development of cancer and embryonic stem cells, through controlling genome integrity, cancer formation and stemness. Cancer cells have mechanisms to maintain telomeres to avoid initiation of cellular senescence or apoptosis, and halting cell division by critically short telomeres. Modulation of the human telomerase reverse transcriptase is the ratelimiting step for the production of functional telomerase and the telomere maintenance. Human telomerase reverse transcriptase promoter promotes its gene expression only in tumor cells, but not in normal cells. Some cancers activate an alternative lengthening of telomeres maintenance mechanism via DNA recombination to unshorten their telomeres. Not only heritability but also oxidative stress, inflammation, environmental factors, and therapeutic interventions have an effect on telomere shortening, explaining the variability in telomere length across individuals. There have been a large number of publications, which correlate human diseases with progressive telomere shortening. Telomere length of an individual at birth is also important to follow up telomere shortening, and it can be used as biomarkers for healthy aging. On the other hand, understanding of cellular stress factors, which affect stem cell behavior, will be useful in regeneration or treatment in cancer and age-associated diseases. In this review, we will understand the connection between stem cell and telomere biology, cancer, and aging-associated diseases. This connection may be useful for discovering novel drug targets and improve outcomes for patients having cancer and aging-associated diseases.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 133 ◽  
Author(s):  
Aurore Sommer ◽  
Nicola J. Royle

One of the hallmarks of cancer cells is their indefinite replicative potential, made possible by the activation of a telomere maintenance mechanism (TMM). The majority of cancers reactivate the reverse transcriptase, telomerase, to maintain their telomere length but a minority (10% to 15%) utilize an alternative lengthening of telomeres (ALT) pathway. Here, we review the phenotypes and molecular markers specific to ALT, and investigate the significance of telomere mutations and sequence variation in ALT cell lines. We also look at the recent advancements in understanding the different mechanisms behind ALT telomere elongation and finally, the progress made in identifying potential ALT-targeted therapies, including those already in use for the treatment of both hematological and solid tumors.


Author(s):  
Sandra Sampl ◽  
Juliane Hadolt ◽  
Philip Kienzl ◽  
Tamara Braunschmid ◽  
Stefan Stättner ◽  
...  

2020 ◽  
Vol 147 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Monica Sofia Ventura Ferreira ◽  
Mia Dahl Sørensen ◽  
Stefan Pusch ◽  
Dagmar Beier ◽  
Anne-Sophie Bouillon ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sojin Kim ◽  
Youngbeom Seo ◽  
Tamrin Chowdhury ◽  
Hyeon Jong Yu ◽  
Chae Eun Lee ◽  
...  

Abstract Mucin 1 (MUC1) is a transmembrane glycoprotein involved in tumorigenesis of diverse cancers. However, the role of MUC1 in glioblastoma (GBM) has not yet been fully explored. In this study, the anticancer mechanism of MUC1 suppression in GBM was investigated. The expression level of MUC1 was analyzed in human glioma and paired normal brain tissues. MUC1 was overexpressed in GBM and was negatively associated with overall survival. Moreover, we silenced MUC1 to investigate its effect in GBM cell lines and found that knockdown of MUC1 inhibited cell proliferation and resulted in cell cycle arrest at G1 phase. MUC1 silencing decreased the phosphorylation of RB1 and increased the expression of CDKN1B. Gene set enrichment analysis showed that a series of genes related to cell cycle, telomere maintenance and transforming growth factor Beta (TGF-β) signaling in epithelial mesenchymal transition (EMT) were influenced by MUC1 knockdown. Notably, the reduced TERT expression levels combined with impaired telomerase activity and the switching of telomere maintenance mechanism to alternative lengthening of telomeres (ALT) were observed after MUC1 knockdown. Our results support the role of MUC1 in oncological process in GBM which can be developed as a therapeutic target for cell cycle control and telomere maintenance mechanism.


2018 ◽  
Author(s):  
Jennifer R. Peters-Hall ◽  
Jaewon Min ◽  
Enzo Tedone ◽  
Sei Sho ◽  
Silvia Siteni ◽  
...  

AbstractThe “Hayflick limit” is a “mitotic clock” and primary cells have a finite lifespan that correlates with telomere length. However, introduction of the telomerase catalytic protein component (TERT) is insufficient to immortalize most, but not all, human cell types under typical cell culture conditions. Originally, telomerase activity was only detected in cancer cells but is now recognized as being detectable in transit amplifying cells in tissues undergoing regeneration or in extreme conditions of wound repair. Here we report thatin vitrolow stress culture conditions allow normal human lung basal epithelial cells to grow for over 200 population doublings without engaging any telomere maintenance mechanism. This suggests that most reported instances of telomere-based replicative senescence are due to cell culture stress-induced premature senescence.One Sentence SummaryHuman lung cells growing in reduced stress conditions can divide well beyond the Hayflick limit.


Sign in / Sign up

Export Citation Format

Share Document