scholarly journals Genome-Wide Characterization and Expression Analysis of KH Family Genes Response to ABA and SA in Arabidopsis thaliana

2022 ◽  
Vol 23 (1) ◽  
pp. 511
Author(s):  
Yanjie Zhang ◽  
Yu Ma ◽  
Ruiqi Liu ◽  
Guanglin Li

K-homologous (KH) family is a type of nucleic acid-binding protein containing the KH domain and has been found to affect splicing and transcriptional regulation. However, KH family genes haven’t been investigated in plant species systematically. In this study, we identified 30 genes that belonged to the KH family based on HMM of the KH domain in Arabidopsis thaliana. Phylogenetic tree analysis showed that the KH family is grouped into three subgroups. Synteny analysis showed that AtKH9 and AtKH29 have the conserved synteny relationship between A. thaliana and the other five species. The AtKH9 and AtKH29 were located in the cytoplasm and nucleus. The seed germination rates of the mutants atkh9 and atkh29 were higher than wild-type after abscisic acid (ABA) and salicylic acid (SA) treatments. In addition, the expression of ABA-related genes, such as ABRE-binding factor 2 (ABF2), ABRE-binding factor 4 (ABF4), and delta 1-pyrroline-5-carboxylate synthase (P5CS), and an SA-related gene pathogenesis-related proteins b (PR1b) were downregulated after ABA and SA treatments, respectively. These results suggested that atkh9 and atkh29 mutants inhibit the effect of ABA and SA on seed germination. In conclusion, our results provide valuable information for further exploration of the function of KH family genes and propose directions and ideas for the identification and characterization of KH family genes in other plants.

2005 ◽  
Vol 18 (6) ◽  
pp. 555-561 ◽  
Author(s):  
Sotirios E. Tjamos ◽  
Emmanouil Flemetakis ◽  
Epaminondas J. Paplomatas ◽  
Panagiotis Katinakis

The biocontrol bacterium Paenibacillus alvei K165 has the ability to protect Arabidopsis thaliana against Verticillium dahliae. A direct antagonistic action of strain K165 against V. dahliae was ruled out, making it likely that K165-mediated protection results from induced systemic resistance (ISR) in the host. K165-mediated protection was tested in various Arabidopsis mutants and transgenic plants impaired in defense signaling pathways, including NahG (transgenic line degrading salicylic acid [SA]), etr1-1 (insensitive to ethylene), jar1-1 (insensitive to jasmonate), npr1-1 (non-expressing NPR1 protein), pad3-1 (phytoalexin deficient), pad4-1 (phytoalexin deficient), eds5/sid1 (enhanced disease susceptibility), and sid2 (SA-induction deficient). ISR was blocked in blocked in Arabidopsis mutants npr1-1, eds5/sid1, and sid2, indicating that components of the pathway from isochorismate and a functional NPR1 play a crucial role in the K165-mediated ISR. Furthermore, the concomitant activation and increased transient accumulation of the PR-1, PR-2, and PR-5 genes were observed in the treatment in which both the inducing bacterial strain and the challenging pathogen were present in the rhizosphere of the A. thaliana plants.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2647
Author(s):  
Yilin Zhang ◽  
Wei Chen ◽  
Xiaohui Sang ◽  
Ting Wang ◽  
Haiyan Gong ◽  
...  

(1) Background: Plants respond to pathogen challenge by activating a defense system involving pathogenesis-related (PR) proteins. The PR-5 family includes thaumatin, thaumatin-like proteins (TLPs), and other related proteins. TLPs play an important role in response to biotic and abiotic stresses. Many TLP-encoding genes have been identified and functionally characterized in the model plant species. (2) Results: We identified a total of 90 TLP genes in the G. barbadense genome. They were phylogenetically classified into 10 subfamilies and distributed across 19 chromosomes and nine scaffolds. The genes were characterized by examining their exon–intron structures, promoter cis-elements, conserved domains, synteny and collinearity, gene family evolution, and gene duplications. Several TLP genes were predicted to be targets of miRNAs. Investigation of expression changes of 21 GbTLPs in a G. barbadense cultivar (Hai7124) resistance to Verticillium dahliae revealed 13 GbTLPs being upregulated in response to V. dahliae infection, suggesting a potential role of these GbTLP genes in disease response. (3) Conclusions: The results of this study allow insight into the GbTLP gene family, identify GbTLP genes responsive to V. dahliae infection, and provide candidate genes for future studies of their roles in disease resistance.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 720
Author(s):  
Mikhail A. Filyushin ◽  
Olga K. Anisimova ◽  
Elena Z. Kochieva ◽  
Anna V. Shchennikova

Vegetables of the Allium genus are prone to infection by Fusarium fungi. Chitinases of the GH19 family are pathogenesis-related proteins inhibiting fungal growth through the hydrolysis of cell wall chitin; however, the information on garlic (Allium sativum L.) chitinases is limited. In the present study, we identified seven class I chitinase genes, AsCHI1–7, in the A. sativum cv. Ershuizao genome, which may have a conserved function in the garlic defense against Fusarium attack. The AsCHI1–7 promoters contained jasmonic acid-, salicylic acid-, gibberellins-, abscisic acid-, auxin-, ethylene-, and stress-responsive elements associated with defense against pathogens. The expression of AsCHI2, AsCHI3, and AsCHI7 genes was constitutive in Fusarium-resistant and -susceptible garlic cultivars and was mostly induced at the early stage of F. proliferatum infection. In roots, AsCHI2 and AsCHI3 mRNA levels were increased in the susceptible and decreased in the resistant cultivar, whereas in cloves, AsCHI7 and AsCHI5 expression was decreased in the susceptible but increased in the resistant plants, suggesting that these genes are involved in the garlic response to Fusarium proliferatum attack. Our results provide insights into the role of chitinases in garlic and may be useful for breeding programs to increase the resistance of Allium crops to Fusarium infections.


2005 ◽  
Vol 41 (5) ◽  
pp. 697-709 ◽  
Author(s):  
Kazumi Nakabayashi ◽  
Masanori Okamoto ◽  
Tomokazu Koshiba ◽  
Yuji Kamiya ◽  
Eiji Nambara

Sign in / Sign up

Export Citation Format

Share Document