scholarly journals Identifying MicroRNAs Involved in Degeneration of the Organ of Corti during Age-Related Hearing Loss

PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e62786 ◽  
Author(s):  
Qian Zhang ◽  
Huizhan Liu ◽  
JoAnn McGee ◽  
Edward J. Walsh ◽  
Garrett A. Soukup ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Alessandra Fioretti ◽  
Otello Poli ◽  
Theodoros Varakliotis ◽  
Alberto Eibenstein

The physiological age-related hearing loss is defined as presbycusis and it is characterized by reduced hearing sensitivity and problems in understanding spoken language especially in a noisy environment. In elderly the reduced speech recognition is generally caused by a reduction of the cochlear cells in the organ of Corti and degeneration of the central auditory pathways. In order to have a complete management strategy of central and peripheral presbycusis the diagnostic evaluation should include clinical ENT examination, standard audiological tests, and tests of central auditory function. Treatment should include not only the appropriate instruments for peripheral compensation but also auditory rehabilitative training and counseling to prevent social isolation and loss of autonomy. Other common hearing disorders in elderly are tinnitus and hyperacusis which are often undervalued. Tinnitus is characterized by the perception of a “phantom” sound due to abnormal auditory perception. Hyperacusis is defined as a reduced tolerance to ordinary environmental sounds. Furthermore auditory, visual, nociceptive, and proprioceptive systems may be involved together in a possible context of “sensorineural aging.” The aim of this review is to underline the presence of hearing disorders like tinnitus and hyperacusis which in many cases coexist with hearing loss in elderly.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1497
Author(s):  
Luz del Mar Rivas-Chacón ◽  
Sofía Martínez-Rodríguez ◽  
Raquel Madrid-García ◽  
Joaquín Yanes-Díaz ◽  
Juan Ignacio Riestra-Ayora ◽  
...  

Age-related hearing loss (ARHL) is an increasing and gradual sensorineural hearing dysfunction. Oxidative stress is an essential factor in developing ARHL; additionally, premature senescence of auditory cells induced by oxidative stress can produce hearing loss. Hydrogen peroxide (H2O2) represents a method commonly used to generate cellular senescence in vitro. The objective of the present paper is to study H2O2-induced senescence patterns in three auditory cell lines (House Ear Institute-Organ of Corti 1, HEI-OC1; organ of Corti, OC-k3, and stria vascularis, SV-k1 cells) to elucidate the intrinsic mechanisms responsible for ARHL. The auditory cells were exposed to H2O2 at different concentrations and times. The results obtained show different responses of the hearing cells concerning cell growth, β-galactosidase activity, morphological changes, mitochondrial activation, levels of oxidative stress, and other markers of cell damage (Forkhead box O3a, FoxO3a, and 8-oxoguanine, 8-oxoG). Comparison between the responses of these auditory cells to H2O2 is a helpful method to evaluate the molecular mechanisms responsible for these auditory cells’ senescence. Furthermore, this in vitro model could help develop anti-senescent therapeutic strategies for the treatment of AHRL.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Chisato Fujimoto ◽  
Tatsuya Yamasoba

Age-related hearing loss (ARHL), the progressive loss of hearing associated with aging, is the most common sensory disorder in the elderly population. The pathology of ARHL includes the hair cells of the organ of Corti, stria vascularis, and afferent spiral ganglion neurons as well as the central auditory pathways. Many studies have suggested that the accumulation of mitochondrial DNA damage, the production of reactive oxygen species, and decreased antioxidant function are associated with subsequent cochlear senescence in response to aging stress. Mitochondria play a crucial role in the induction of intrinsic apoptosis in cochlear cells. ARHL can be prevented in laboratory animals by certain interventions, such as caloric restriction and supplementation with antioxidants. In this review, we will focus on previous research concerning the role of the oxidative stress and mitochondrial dysfunction in the pathology of ARHL in both animal models and humans and introduce concepts that have recently emerged regarding the mechanisms of the development of ARHL.


2016 ◽  
Vol 17 (2) ◽  
pp. 68-73
Author(s):  
Dong-Wook Kim ◽  
Tae-Young Lee ◽  
Da-Hye Choi ◽  
Taek-Yeong Kim ◽  
Hyun-Chul Moon

2021 ◽  
Vol 22 (6) ◽  
pp. 2853
Author(s):  
Judit Szepesy ◽  
Viktória Humli ◽  
János Farkas ◽  
Ildikó Miklya ◽  
Júlia Tímár ◽  
...  

Age-related hearing loss (ARHL), a sensorineural hearing loss of multifactorial origin, increases its prevalence in aging societies. Besides hearing aids and cochlear implants, there is no FDA approved efficient pharmacotherapy to either cure or prevent ARHL. We hypothesized that selegiline, an antiparkinsonian drug, could be a promising candidate for the treatment due to its complex neuroprotective, antioxidant, antiapoptotic, and dopaminergic neurotransmission enhancing effects. We monitored by repeated Auditory Brainstem Response (ABR) measurements the effect of chronic per os selegiline administration on the hearing function in BALB/c and DBA/2J mice, which strains exhibit moderate and rapid progressive high frequency hearing loss, respectively. The treatments were started at 1 month of age and lasted until almost a year and 5 months of age, respectively. In BALB/c mice, 4 mg/kg selegiline significantly mitigated the progression of ARHL at higher frequencies. Used in a wide dose range (0.15–45 mg/kg), selegiline had no effect in DBA/2J mice. Our results suggest that selegiline can partially preserve the hearing in certain forms of ARHL by alleviating its development. It might also be otoprotective in other mammals or humans.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alina Schulte ◽  
Christiane M. Thiel ◽  
Anja Gieseler ◽  
Maike Tahden ◽  
Hans Colonius ◽  
...  

Abstract Age-related hearing loss has been related to a compensatory increase in audio-visual integration and neural reorganization including alterations in functional resting state connectivity. How these two changes are linked in elderly listeners is unclear. The current study explored modulatory effects of hearing thresholds and audio-visual integration on resting state functional connectivity. We analysed a large set of resting state data of 65 elderly participants with a widely varying degree of untreated hearing loss. Audio-visual integration, as gauged with the McGurk effect, increased with progressing hearing thresholds. On the neural level, McGurk illusions were negatively related to functional coupling between motor and auditory regions. Similarly, connectivity of the dorsal attention network to sensorimotor and primary motor cortices was reduced with increasing hearing loss. The same effect was obtained for connectivity between the salience network and visual cortex. Our findings suggest that with progressing untreated age-related hearing loss, functional coupling at rest declines, affecting connectivity of brain networks and areas associated with attentional, visual, sensorimotor and motor processes. Especially connectivity reductions between auditory and motor areas were related to stronger audio-visual integration found with increasing hearing loss.


2021 ◽  
Vol 22 (15) ◽  
pp. 8111
Author(s):  
Kuang-Hsu Lien ◽  
Chao-Hui Yang

The triad of noise-generated, drug-induced, and age-related hearing loss is the major cause of acquired sensorineural hearing loss (ASNHL) in modern society. Although these three forms of hearing loss display similar underlying mechanisms, detailed studies have revealed the presence of sex differences in the auditory system both in human and animal models of ASNHL. However, the sexual dimorphism of hearing varies among noise-induced hearing loss (NIHL), ototoxicity, and age-related hearing loss (ARHL). Importantly, estrogen may play an essential role in modulating the pathophysiological mechanisms in the cochlea and several reports have shown that the effects of hormone replacement therapy on hearing loss are complex. This review will summarize the clinical features of sex differences in ASNHL, compare the animal investigations of cochlear sexual dimorphism in response to the three insults, and address how estrogen affects the auditory organ at molecular levels.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1041
Author(s):  
Jacqueline Chester ◽  
Edan Johnston ◽  
Daniel Walker ◽  
Melissa Jones ◽  
Corina Mihaela Ionescu ◽  
...  

Aging is considered a contributing factor to many diseases such as cardiovascular disease, Alzheimer’s disease, and hearing loss. Age-related hearing loss, also termed presbycusis, is one of the most common sensory impairments worldwide, affecting one in five people over 50 years of age, and this prevalence is growing annually. Associations have emerged between presbycusis and detrimental health outcomes, including social isolation and mental health. It remains largely untreatable apart from hearing aids, and with no globally established prevention strategies in the clinical setting. Hence, this review aims to explore the pathophysiology of presbycusis and potential therapies, based on a recent advancement in bile acid-based bio-nanotechnologies. A comprehensive online search was carried out using the following keywords: presbycusis, drugs, hearing loss, bile acids, nanotechnology, and more than 150 publications were considered directly relevant. Evidence of the multifaceted oxidative stress and chronic inflammation involvement in cellular damage and apoptosis that is associated with a loss of hair cells, damaged and inflamed stria vascularis, and neuronal signalling loss and apoptosis continues to emerge. New robust and effective therapies require drug delivery deeper into the various layers of the cochlea. Bile acid-based nanotechnology has gained wide interest in its permeation-enhancing ability and potential for numerous applications in treating presbycusis.


Sign in / Sign up

Export Citation Format

Share Document