scholarly journals A Role for Cytosolic Isocitrate Dehydrogenase as a Negative Regulator of Glucose Signaling for Insulin Secretion in Pancreatic ß-Cells

PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e77097 ◽  
Author(s):  
Claudiane Guay ◽  
Érik Joly ◽  
Émilie Pepin ◽  
Annie Barbeau ◽  
Lisa Hentsch ◽  
...  
Diabetes ◽  
1999 ◽  
Vol 48 (5) ◽  
pp. 1006-1012 ◽  
Author(s):  
H. Yajima ◽  
M. Komatsu ◽  
T. Schermerhorn ◽  
T. Aizawa ◽  
T. Kaneko ◽  
...  

2001 ◽  
pp. 667-675 ◽  
Author(s):  
J Westerlund ◽  
H Ortsater ◽  
F Palm ◽  
T Sundsten ◽  
P Bergsten

OBJECTIVE: Regulation of insulin release by glucose involves dual pathways, including or not inhibition of ATP-sensitive K(+) channels (K(ATP) channels). Whereas the K(ATP) channel-dependent pathway produces pulsatile release of insulin it is not clear whether the independent pathway also generates such kinetics. DESIGN AND METHODS: To clarify this matter, insulin secretion and cytoplasmic Ca(2+) ([Ca(2+)](i)) were studied in perifused pancreatic islets from ob/ob mice. Insulin release was measured by ELISA technique and [Ca(2+)](i) by dual-wavelength fluorometry. RESULTS: Insulin secretion was pulsatile (0.2--0.3/min) at 3 mmol/l glucose when [Ca(2+)](i) was low and stable. Stimulation with 11 mmol/l of the sugar increased the amplitude of the insulin pulses with maintained frequency and induced oscillations in [Ca(2+)](i). Permanent opening of the K(ATP) channels with diazoxide inhibited glucose-stimulated insulin secretion back to basal levels with maintained pulsatility despite stable and basal [Ca(2+)](i) levels. Increase of the K(+) concentration to 30.9 mmol/l in the continued presence of diazoxide and 11 mmol/l glucose restored the secretory rate with maintained pulsatility and caused stable elevation in [Ca(2+)](i). Simultaneous introduction of diazoxide and elevation of K(+) augmented average insulin release almost 30-fold in 3 mmol/l glucose with maintained pulse frequency. Subsequent elevation of the glucose concentration to 11 and 20 mmol/l increased the release levels. After prolonged exposure to diazoxide, elevated K(+) and 20 mmol/l glucose, the pulse frequency decreased significantly. CONCLUSIONS: Not only glucose signaling via the K(ATP) channel-dependent but also that via the independent pathway generates amplitude-modulated pulsatile release of insulin from isolated islets.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Li Hu ◽  
Fengli He ◽  
Meifeng Huang ◽  
Qian Zhao ◽  
Lamei Cheng ◽  
...  

Abstract SPARC-deficient mice have been shown to exhibit impaired glucose tolerance and insulin secretion, but the underlying mechanism remains unknown. Here, we showed that SPARC enhanced the promoting effect of Muscarinic receptor agonist oxotremorine-M on insulin secretion in cultured mouse islets. Overexpression of SPARC down-regulated RGS4, a negative regulator of β-cell M3 muscarinic receptors. Conversely, knockdown of SPARC up-regulated RGS4 in Min6 cells. RGS4 was up-regulated in islets from sparc −/− mice, which correlated with decreased glucose-stimulated insulin secretion (GSIS). Furthermore, inhibition of RGS4 restored GSIS in the islets from sparc −/− mice, and knockdown of RGS4 partially decreased the promoting effect of SPARC on oxotremorine-M-stimulated insulin secretion. Phosphoinositide 3-kinase (PI3K) inhibitor LY-294002 abolished SPARC-induced down-regulation of RGS4. Taken together, our data revealed that SPARC promoted GSIS by inhibiting RGS4 in pancreatic β cells.


2015 ◽  
Vol 212 (8) ◽  
pp. 1239-1254 ◽  
Author(s):  
Elisabeth K. Malle ◽  
Nathan W. Zammit ◽  
Stacey N. Walters ◽  
Yen Chin Koay ◽  
Jianmin Wu ◽  
...  

The nuclear factor κB (NF-κB) pathway is a master regulator of inflammatory processes and is implicated in insulin resistance and pancreatic β cell dysfunction in the metabolic syndrome. Whereas canonical NF-κB signaling is well studied, there is little information on the divergent noncanonical NF-κB pathway in the context of pancreatic islet dysfunction. Here, we demonstrate that pharmacological activation of the noncanonical NF-κB–inducing kinase (NIK) disrupts glucose homeostasis in zebrafish in vivo. We identify NIK as a critical negative regulator of β cell function, as pharmacological NIK activation results in impaired glucose-stimulated insulin secretion in mouse and human islets. NIK levels are elevated in pancreatic islets isolated from diet-induced obese (DIO) mice, which exhibit increased processing of noncanonical NF-κB components p100 to p52, and accumulation of RelB. TNF and receptor activator of NF-κB ligand (RANKL), two ligands associated with diabetes, induce NIK in islets. Mice with constitutive β cell–intrinsic NIK activation present impaired insulin secretion with DIO. NIK activation triggers the noncanonical NF-κB transcriptional network to induce genes identified in human type 2 diabetes genome-wide association studies linked to β cell failure. These studies reveal that NIK contributes a central mechanism for β cell failure in diet-induced obesity.


PLoS Genetics ◽  
2011 ◽  
Vol 7 (10) ◽  
pp. e1002323 ◽  
Author(s):  
Sushant Bhatnagar ◽  
Angie T. Oler ◽  
Mary E. Rabaglia ◽  
Donald S. Stapleton ◽  
Kathryn L. Schueler ◽  
...  

2000 ◽  
Vol 279 (3) ◽  
pp. E684-E694 ◽  
Author(s):  
Yuguang Shi ◽  
Jamil Kanaani ◽  
Virginie Menard-Rose ◽  
Yan Hui Ma ◽  
Pi-Yun Chang ◽  
...  

The functional role of glutamate decarboxylase (GAD) and its product GABA in pancreatic islets has remained elusive. Mouse β-cells express the larger isoform GAD67, whereas human islets express only the smaller isoform GAD65. We have generated two lines of transgenic mice expressing human GAD65 in pancreatic β-cells (RIP7-hGAD65, Lines 1 and 2) to study the effect that GABA generated by this isoform has on islet cell function. The ascending order of hGAD65 expression and/or activity in β-cells was Line 1 heterozygotes < Line 2 heterozygotes < Line 1 homozygotes. Line 1 heterozygotes have normal glucose tolerance, whereas Line 1 homozygotes and Line 2 heterozygotes exhibit impaired glucose tolerance and inhibition of insulin secretion in vivo in response to glucose. In addition, fasting levels of blood glucose are elevated and insulin is decreased in Line 1 homozygotes. Pancreas perfusion experiments suggest that GABA generated by GAD65 may function as a negative regulator of first-phase insulin secretion in response to glucose by affecting a step proximal to or at the KATP +channel.


2013 ◽  
Vol 1830 (11) ◽  
pp. 5104-5111 ◽  
Author(s):  
Michael J. MacDonald ◽  
Laura J. Brown ◽  
Melissa J. Longacre ◽  
Scott W. Stoker ◽  
Mindy A. Kendrick

Endocrinology ◽  
2006 ◽  
Vol 147 (11) ◽  
pp. 5110-5118 ◽  
Author(s):  
Veronique Attali ◽  
Marcela Parnes ◽  
Yafa Ariav ◽  
Erol Cerasi ◽  
Nurit Kaiser ◽  
...  

Succinate stimulates insulin secretion and proinsulin biosynthesis. We studied the effects of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-modulating pathways on glucose- and succinate-stimulated insulin secretion and proinsulin biosynthesis in the rat and the insulin-resistant Psammomys obesus. Disruption of the anaplerotic pyruvate/malate shuttle by phenylacetic acid inhibited glucose- and succinate-stimulated insulin secretion and succinate-stimulated proinsulin biosynthesis in both species. In contrast, phenylacetic acid failed to inhibit glucose-stimulated proinsulin biosynthesis in P. obesus islets. Inhibition of the NADPH-consuming enzyme neuronal nitric oxide synthase (nNOS) with l-NG-nitro-l-arginine methyl ester or with NG-monomethyl-l-arginineG doubled succinate-stimulated insulin secretion in rat islets, suggesting that succinate- and nNOS-derived signals interact to regulate insulin secretion. In contrast, nNOS inhibition had no effect on succinate-stimulated proinsulin biosynthesis in both species. In P. obesus islets, insulin secretion was not stimulated by succinate in the absence of glucose, whereas proinsulin biosynthesis was increased 5-fold. Conversely, under stimulating glucose levels, succinate doubled insulin secretion, indicating glucose-dependence. Pyruvate ester and inhibition of nNOS partially mimicked the permissive effect of glucose on succinate-stimulated insulin secretion, suggesting that anaplerosis-derived signals render the β-cells responsive to succinate. We conclude that β-cell anaplerosis via pyruvate carboxylase is important for glucose- and succinate-stimulated insulin secretion and for succinate-stimulated proinsulin biosynthesis. In P. obesus, pyruvate/malate shuttle dependent and independent pathways that regulate proinsulin biosynthesis coexist; the latter can maintain fuel stimulated biosynthetic activity when the succinate-dependent pathway is inhibited. nNOS signaling is a negative regulator of insulin secretion, but not of proinsulin biosynthesis.


2012 ◽  
Vol 26 (10) ◽  
pp. 1757-1772 ◽  
Author(s):  
Norman Simpson ◽  
Antonella Maffei ◽  
Matthew Freeby ◽  
Steven Burroughs ◽  
Zachary Freyberg ◽  
...  

Abstract We describe a negative feedback autocrine regulatory circuit for glucose-stimulated insulin secretion in purified human islets in vitro. Using chronoamperometry and in vitro glucose-stimulated insulin secretion measurements, evidence is provided that dopamine (DA), which is loaded into insulin-containing secretory granules by vesicular monoamine transporter type 2 in human β-cells, is released in response to glucose stimulation. DA then acts as a negative regulator of insulin secretion via its action on D2R, which are also expressed on β-cells. We found that antagonism of receptors participating in islet DA signaling generally drive increased glucose-stimulated insulin secretion. These in vitro observations may represent correlates of the in vivo metabolic changes associated with the use of atypical antipsychotics, such as increased adiposity.


2008 ◽  
Vol 7 (8) ◽  
pp. 1299-1308 ◽  
Author(s):  
Martina Hnatova ◽  
Micheline Wésolowski-Louvel ◽  
Guenaëlle Dieppois ◽  
Julien Deffaud ◽  
Marc Lemaire

ABSTRACT The expression of the major glucose transporter gene, RAG1, is induced by glucose in Kluyveromyces lactis. This regulation involves several pathways, including one that is similar to Snf3/Rgt2-ScRgt1 in Saccharomyces cerevisiae. We have identified missing key components of the K. lactis glucose signaling pathway by comparison to the same pathway of S. cerevisiae. We characterized a new mutation, rag19, which impairs RAG1 regulation. The Rag19 protein is 43% identical to the F-box protein ScGrr1 of S. cerevisiae and is able to complement an Scgrr1 mutation. In the K. lactis genome, we identified a single gene, SMS1 (for similar to Mth1 and Std1), that encodes a protein showing an average of 50% identity with Mth1 and Std1, regulators of the ScRgt1 repressor. The suppression of the rag4 (glucose sensor), rag8 (casein kinase I), and rag19 mutations by the Δsms1 deletion, together with the restoration of RAG1 transcription in the double mutants, demonstrates that Sms1 is a negative regulator of RAG1 expression and is acting downstream of Rag4, Rag8, and Rag19 in the cascade. We report that Sms1 regulates KlRgt1 repressor activity by preventing its phosphorylation in the absence of glucose, and that SMS1 is regulated by glucose, both at the transcriptional and the posttranslational level. Two-hybrid interactions of Sms1 with the glucose sensor and KlRgt1 repressor suggest that Sms1 mediates the glucose signal from the plasma membrane to the nucleus. All of these data demonstrated that Sms1 was the K. lactis homolog of MTH1 and STD1 of S. cerevisiae. Interestingly, MTH1 and STD1 were unable to complement a Δsms1 mutation.


Sign in / Sign up

Export Citation Format

Share Document