scholarly journals Global Analysis of Transcriptome Responses and Gene Expression Profiles to Cold Stress of Jatropha curcas L.

PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e82817 ◽  
Author(s):  
Haibo Wang ◽  
Zhurong Zou ◽  
Shasha Wang ◽  
Ming Gong
PLoS ONE ◽  
2014 ◽  
Vol 9 (5) ◽  
pp. e97878 ◽  
Author(s):  
Lin Zhang ◽  
Chao Zhang ◽  
Pingzhi Wu ◽  
Yaping Chen ◽  
Meiru Li ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (5) ◽  
pp. e36522 ◽  
Author(s):  
Huawu Jiang ◽  
Pingzhi Wu ◽  
Sheng Zhang ◽  
Chi Song ◽  
Yaping Chen ◽  
...  

Endocrinology ◽  
2007 ◽  
Vol 148 (3) ◽  
pp. 1059-1079 ◽  
Author(s):  
Virginia D. Winn ◽  
Ronit Haimov-Kochman ◽  
Agnes C. Paquet ◽  
Y. Jean Yang ◽  
M. S. Madhusudhan ◽  
...  

Human placentation entails the remarkable integration of fetal and maternal cells into a single functional unit. In the basal plate region (the maternal-fetal interface) of the placenta, fetal cytotrophoblasts from the placenta invade the uterus and remodel the resident vasculature and avoid maternal immune rejection. Knowing the molecular bases for these unique cell-cell interactions is important for understanding how this specialized region functions during normal pregnancy with implications for tumor biology and transplantation immunology. Therefore, we undertook a global analysis of the gene expression profiles at the maternal-fetal interface. Basal plate biopsy specimens were obtained from 36 placentas (14–40 wk) at the conclusion of normal pregnancies. RNA was isolated, processed, and hybridized to HG-U133A&B Affymetrix GeneChips. Surprisingly, there was little change in gene expression during the 14- to 24-wk interval. In contrast, 418 genes were differentially expressed at term (37–40 wk) as compared with midgestation (14–24 wk). Subsequent analyses using quantitative PCR and immunolocalization approaches validated a portion of these results. Many of the differentially expressed genes are known in other contexts to be involved in differentiation, motility, transcription, immunity, angiogenesis, extracellular matrix dissolution, or lipid metabolism. One sixth were nonannotated or encoded hypothetical proteins. Modeling based on structural homology revealed potential functions for 31 of these proteins. These data provide a reference set for understanding the molecular components of the dialogue taking place between maternal and fetal cells in the basal plate as well as for future comparisons of alterations in this region that occur in obstetric complications.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1818
Author(s):  
Eleni Syngelaki ◽  
Claudia Paetzold ◽  
Elvira Hörandl

Alpine habitats are shaped by harsh abiotic conditions and cold climates. Temperature stress can affect phenotypic plasticity, reproduction, and epigenetic profiles, which may affect acclimation and adaptation. Distribution patterns suggest that polyploidy seems to be advantageous under cold conditions. Nevertheless, whether temperature stress can induce gene expression changes in different cytotypes, and how the response is initialized through gene set pathways and epigenetic control remain vague for non-model plants. The perennial alpine plant Ranunculus kuepferi was used to investigate the effect of cold stress on gene expression profiles. Diploid and autotetraploid individuals were exposed to cold and warm conditions in climate growth chambers and analyzed via transcriptome sequencing and qRT-PCR. Overall, cold stress changed gene expression profiles of both cytotypes and induced cold acclimation. Diploids changed more gene set pathways than tetraploids, and suppressed pathways involved in ion/cation homeostasis. Tetraploids mostly activated gene set pathways related to cell wall and plasma membrane. An epigenetic background for gene regulation in response to temperature conditions is indicated. Results suggest that perennial alpine plants can respond to temperature extremes via altered gene expression. Tetraploids are better acclimated to cold conditions, enabling them to colonize colder climatic areas in the Alps.


2008 ◽  
Vol 132 (10) ◽  
pp. 1562-1565
Author(s):  
Montserrat Sanchez-Cespedes

Abstract Context.—The development of targeted therapies creates a need to accurately classify tumors. Among the more pressing needs are the identification of the complete catalog of genes that are altered in cancer and the accurate discrimination of tumors based on their genetic background. Objectives.—To discuss the use of gene expression profiles to recapitulate the pathology and to distinguish the genetic background of non–small cell lung cancer. Also, to comment on using global analysis of gene expression to identify chromosomal regions carrying clusters of highly expressed genes, likely due to gene amplification. Gene amplification at these regions may target the activation of an oncogene critical to tumor development and potentially important in therapy. Data Sources.—Review of relevant, recent literature on molecular alterations and expression analysis in lung cancer. Conclusions.—The complexity of genetic and epigenetic alterations and the cell type of origin confer marked patterns of gene expression to lung tumors, which differentiate different tumor entities.


Sign in / Sign up

Export Citation Format

Share Document