scholarly journals Arabidopsis thaliana Glyoxalase 2-1 Is Required during Abiotic Stress but Is Not Essential under Normal Plant Growth

PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e95971 ◽  
Author(s):  
Sriram Devanathan ◽  
Alexander Erban ◽  
Rodolfo Perez-Torres ◽  
Joachim Kopka ◽  
Christopher A. Makaroff
1999 ◽  
Vol 12 (11) ◽  
pp. 951-959 ◽  
Author(s):  
Salme Timmusk ◽  
E. Gerhart H. Wagner

This paper addresses changes in plant gene expression induced by inoculation with plant-growth-promoting rhizobacteria (PGPR). A gnotobiotic system was established with Arabidopsis thaliana as model plant, and isolates of Paenibacillus polymyxa as PGPR. Subsequent challenge by either the pathogen Erwinia carotovora (biotic stress) or induction of drought (abiotic stress) indicated that inoculated plants were more resistant than control plants. With RNA differential display on parallel RNA preparations from P. polymyxa- treated or untreated plants, changes in gene expression were investigated. From a small number of candidate sequences obtained by this approach, one mRNA segment showed a strong inoculation-dependent increase in abundance. The corresponding gene was identified as ERD15, previously identified to be drought stress responsive. Quantification of mRNA levels of several stress-responsive genes indicated that P. polymyxa induced mild biotic stress. This suggests that genes and/or gene classes associated with plant defenses against abiotic and biotic stress may be co-regulated. Implications of the effects of PGPR on the induction of plant defense pathways are discussed.


Author(s):  
Bao-Zhen Zhao ◽  
Yang Yu ◽  
Zhi Yang ◽  
Qi Ding ◽  
Na Cui

Aims: SPS (Sucrose phosphate synthase) participates in plant growth and yield formation, and plays an important role in plant stress resistance. This study used T-DNA insertion mutant of AtSPS in Arabidopsis as test material. The growth indexes and soluble sugar contents of Arabidopsis thaliana under salt stress, osmotic stress and low temperature stress were determined, which laid the foundation for further understanding the mechanism of SPS in plant growth and development and abiotic stress resistance. Study Design: In order to analyze the mechanism of SPS in plant growth and development and abiotic stress resistance, this study used T-DNA insertion mutant of AtSPS in Arabidopsis as test material. The growth indexes and soluble sugar contents of Arabidopsis thaliana under salt stress, osmotic stress and low temperature stress were determined. Place and Duration of Study: College of Biological Science and Technology, between December 2020 and May 2021. Methodology: The contents of soluble sugar in tomato fruits were measured with HPLC (High performance liquid chromatography). The growth indexes were determined. Results: The results showed that AtSPS played positive regulation roles in seed germination and seedling growth of Arabidopsis thaliana. However, under abiotic stress conditions, AtSPS mutant increased the contents of soluble sugar, suggesting that Arabidopsis thaliana seedlings might improve resistance through osmotic regulating substances. Conclusion: AtSPS played positive regulation roles in seed germination and seedling growth of Arabidopsis. Meanwhile, AtSPS mutant increased the contents of soluble sugar to increase resistance of Arabidopsis under abiotic stresses, and the growth and development were blocked, suggesting that SPS was negative regulatory element to resist abiotic stress.


2017 ◽  
Vol 6 (3) ◽  
Author(s):  
Sandhya Vardharajula ◽  
Ali SkZ ◽  
Sai Shiva Krishna Prasad Vurukonda ◽  
Manjari Shrivastava

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 623
Author(s):  
Sidra Habib ◽  
Yee Yee Lwin ◽  
Ning Li

Adverse environmental factors like salt stress, drought, and extreme temperatures, cause damage to plant growth, development, and crop yield. GRAS transcription factors (TFs) have numerous functions in biological processes. Some studies have reported that the GRAS protein family plays significant functions in plant growth and development under abiotic stresses. In this study, we demonstrated the functional characterization of a tomato SlGRAS10 gene under abiotic stresses such as salt stress and drought. Down-regulation of SlGRAS10 by RNA interference (RNAi) produced dwarf plants with smaller leaves, internode lengths, and enhanced flavonoid accumulation. We studied the effects of abiotic stresses on RNAi and wild-type (WT) plants. Moreover, SlGRAS10-RNAi plants were more tolerant to abiotic stresses (salt, drought, and Abscisic acid) than the WT plants. Down-regulation of SlGRAS10 significantly enhanced the expressions of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) to reduce the effects of reactive oxygen species (ROS) such as O2− and H2O2. Malondialdehyde (MDA) and proline contents were remarkably high in SlGRAS10-RNAi plants. Furthermore, the expression levels of chlorophyll biosynthesis, flavonoid biosynthesis, and stress-related genes were also enhanced under abiotic stress conditions. Collectively, our conclusions emphasized the significant function of SlGRAS10 as a stress tolerate transcription factor in a certain variety of abiotic stress tolerance by enhancing osmotic potential, flavonoid biosynthesis, and ROS scavenging system in the tomato plant.


Sign in / Sign up

Export Citation Format

Share Document