scholarly journals Aerobic Exercise Training Prevents Heart Failure-Induced Skeletal Muscle Atrophy by Anti-Catabolic, but Not Anabolic Actions

PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e110020 ◽  
Author(s):  
Rodrigo W. A. Souza ◽  
Warlen P. Piedade ◽  
Luana C. Soares ◽  
Paula A. T. Souza ◽  
Andreo F. Aguiar ◽  
...  
2016 ◽  
Vol 214 ◽  
pp. 137-147 ◽  
Author(s):  
Aline V.N. Bacurau ◽  
Paulo R. Jannig ◽  
Wilson M.A.M. de Moraes ◽  
Telma F. Cunha ◽  
Alessandra Medeiros ◽  
...  

2017 ◽  
Vol 122 (4) ◽  
pp. 817-827 ◽  
Author(s):  
Telma F. Cunha ◽  
Luiz R. G. Bechara ◽  
Aline V. N. Bacurau ◽  
Paulo R. Jannig ◽  
Vanessa A. Voltarelli ◽  
...  

We have recently demonstrated that NADPH oxidase hyperactivity, NF-κB activation, and increased p38 phosphorylation lead to atrophy of glycolytic muscle in heart failure (HF). Aerobic exercise training (AET) is an efficient strategy to counteract skeletal muscle atrophy in this syndrome. Therefore, we tested whether AET would regulate muscle redox balance and protein degradation by decreasing NADPH oxidase hyperactivity and reestablishing NF-κB signaling, p38 phosphorylation, and proteasome activity in plantaris muscle of myocardial infarcted-induced HF (MI) rats. Thirty-two male Wistar rats underwent MI or fictitious surgery (SHAM) and were randomly assigned into untrained (UNT) and trained (T; 8 wk of AET on treadmill) groups. AET prevented HF signals and skeletal muscle atrophy in MI-T, which showed an improved exercise tolerance, attenuated cardiac dysfunction and increased plantaris fiber cross-sectional area. To verify the role of inflammation and redox imbalance in triggering protein degradation, circulating TNF-α levels, NADPH oxidase profile, NF-κB signaling, p38 protein levels, and proteasome activity were assessed. MI-T showed a reduced TNF-α levels, NADPH oxidase activity, and Nox2 mRNA expression toward SHAM-UNT levels. The rescue of NADPH oxidase activity induced by AET in MI rats was paralleled by reducing nuclear binding activity of the NF-κB, p38 phosphorylation, atrogin-1, mRNA levels, and 26S chymotrypsin-like proteasome activity. Taken together our data provide evidence for AET improving plantaris redox homeostasis in HF associated with a decreased NADPH oxidase, redox-sensitive proteins activation, and proteasome hyperactivity further preventing atrophy. These data reinforce the role of AET as an efficient therapy for muscle wasting in HF. NEW & NOTEWORTHY This study demonstrates, for the first time, the contribution of aerobic exercise training (AET) in decreasing muscle NADPH oxidase activity associated with reduced reactive oxygen species production and systemic inflammation, which diminish NF-κB overactivation, p38 phosphorylation, and ubiquitin proteasome system hyperactivity. These molecular changes counteract plantaris atrophy in trained myocardial infarction-induced heart failure rats. Our data provide new evidence into how AET may regulate protein degradation and thus prevent skeletal muscle atrophy.


PLoS ONE ◽  
2012 ◽  
Vol 7 (8) ◽  
pp. e41701 ◽  
Author(s):  
Telma F. Cunha ◽  
Aline V. N. Bacurau ◽  
Jose B. N. Moreira ◽  
Nathalie A. Paixão ◽  
Juliane C. Campos ◽  
...  

2013 ◽  
Vol 114 (8) ◽  
pp. 1029-1041 ◽  
Author(s):  
José B. N. Moreira ◽  
Luiz R. G. Bechara ◽  
Luiz H. M. Bozi ◽  
Paulo R. Jannig ◽  
Alex W. A. Monteiro ◽  
...  

Poor skeletal muscle performance was shown to strongly predict mortality and long-term prognosis in a variety of diseases, including heart failure (HF). Despite the known benefits of aerobic exercise training (AET) in improving the skeletal muscle phenotype in HF, the optimal exercise intensity to elicit maximal outcomes is still under debate. Therefore, the aim of the present study was to compare the effects of high-intensity AET with those of a moderate-intensity protocol on skeletal muscle of infarcted rats. Wistar rats underwent myocardial infarction (MI) or sham surgery. MI groups were submitted either to an untrained (MI-UNT); moderate-intensity (MI-CMT, 60% V̇o2 max); or matched volume, high-intensity AET (MI-HIT, intervals at 85% V̇o2 max) protocol. High-intensity AET (HIT) was superior to moderate-intensity AET (CMT) in improving aerobic capacity, assessed by treadmill running tests. Cardiac contractile function, measured by echocardiography, was equally improved by both AET protocols. CMT and HIT prevented the MI-induced decay of skeletal muscle citrate synthase and hexokinase maximal activities, and increased glycogen content, without significant differences between protocols. Similar improvements in skeletal muscle redox balance and deactivation of the ubiquitin-proteasome system were also observed after CMT and HIT. Such intracellular findings were accompanied by prevented skeletal muscle atrophy in both MI-CMT and MI-HIT groups, whereas no major differences were observed between protocols. Taken together, our data suggest that despite superior effects of HIT in improving functional capacity, skeletal muscle adaptations were remarkably similar among protocols, leading to the conclusion that skeletal myopathy in infarcted rats was equally prevented by either moderate-intensity or high-intensity AET.


Author(s):  
Feng Li-Li ◽  
Li Bo-Wen ◽  
Xi Yue ◽  
Tian Zhen-Jun ◽  
Cai Meng-Xin

Objectives: Myocardial infarction (MI)-induced heart failure (HF) is commonly accompanied with profound effects on skeletal muscle. With the process of MI-induced HF, perturbations in skeletal muscle contribute to muscle atrophy. Exercise is viewed as a feasible strategy to prevent muscle atrophy. The aims of this study were to investigate whether exercise could alleviate MI-induced skeletal muscle atrophy via insulin-like growth factor 1 (IGF-1) pathway in mice. Materials and Methods: Male C57/BL6 mice were used to establish the MI model and divided into three groups: sedentary MI group, MI with aerobic exercise group and MI with resistance exercise group, sham-operated group was used as control. Exercise-trained animals were subjected to four-weeks of aerobic exercise (AE) or resistance exercise (RE). Cardiac function, muscle weight, myofiber size, levels of IGF-1 signaling and proteins related to myogenesis, protein synthesis and degradation and cell apoptosis in gastrocnemius muscle were detected. And H2O2-treated C2C12 cells were intervened with recombinant human IGF-1, IGF-1R inhibitor NVP-AEW541 and PI3K inhibitor LY294002 to explore the mechanism. Results:Exercises up-regulated the IGF-1/IGF-1R-phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling, increased the expressions of Pax7, myogenic regulatory factors (MRFs) and protein synthesis, reduced protein degradation and cell apoptosis in MI-mice. In vitro, IGF-1 up-regulated the levels of Pax7 and MRFs, mTOR and P70S6K, reduced MuRF1, MAFbx and inhibited cell apoptosis via IGF-1R-PI3K/Akt pathway. Conclusion: AE and RE, safely and effectively, alleviate skeletal muscle atrophy by regulating the levels of myogenesis, protein degradation and cells apoptosis in mice with MI via activating IGF-1/IGF-1R-PI3K/Akt pathway.


Sign in / Sign up

Export Citation Format

Share Document